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Abstract

Conceptors, although biologically implausible, admirably capture high
dimensional dynamical patterns. This report contains a concise overview
of Conceptors and describes how the same dynamical pattern approxima-
tion can be achieved, with limitations, in a biologically plausible manner
using the Neural Engineering Framework. Two methods are compared to
Conceptors with this goal in mind: Rhythmic Dynamic Movement Prim-
itives, both with and without point attractors. In terms of representing a
dynamic signal, Dynamic Movement Primitives implemented directly per-
formed well for low-frequency signals, while Conceptors performed well for
high-frequency sinusoidal signals. In terms of blending between dynamic
signals, Conceptors are distinct from Dynamic Movement Primitives, but
this usefulness of this is unclear.

1 Introduction

The intent of this project was to replicate the results of Conceptors in the domain
of representing and combining dynamic signals using a neural population [5],
but instead doing so in a biologically plausible manner by leveraging the Neural
Engineering Framework (NEF) [4]. All code used in this report is available
at https://github.com/Seanny123/nef-conceptors.

1.1 Conceptors

The Conceptor approach to representing dynamics is inspired by Reservoir Com-
puting (RC), where a randomly connected population of neurons are fed back
on themselves to create a dynamic system.

The neurons used in Conceptors, which will be referred to as leaky-tanh
neurons, are described by the following activation function act where xin is the
input to the neuron, LR is the memory leak rate and t is time-steps of the
simulation and tmax is the total simulation time:

act(xin(t)) = (1− LR)act(xin(t− 1)) + LR tanh(xin(t))

where 1 < t < tmax

(1)

To create the dynamic system illustrated in Figure 1 an array of of neurons
is used and recurrently connected to each other. Thus Equation 1 is generalized
for multiple neurons in Equation 2.
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Figure 1: Illustration of Reservoir Computing system.

statei(t+ 1) = act(W rec
i statei(t) +W in

i pin(t+ 1) + bi) (2)

Where i is the neuron index, statei is the neuron state, W in are the input
weights to the neuron population (equivalent to the encoders of the NEF), W rec

are the recurrent weights, bi is the bias term for the neuron and pin is the input
pattern. Note that the magnitude W rec is less than their eigenvalues to maintain
a stable system.

In RC, the output weights are set to minimize the error between output
signal pout and the intended signal which is assumed to be some function of the
input signal f(pin), as shown in Equation 3.

pout(t) = W outstate(t)

err = (f(pin)−W outstate(t))2
(3)

This equation can be solved in many different ways, however in the original
Conceptors report “Ridge Regression” was used. This is functionally equivalent
(same inputs and same outputs) to the Least Squares optimization used typically
used in the NEF for solving for decoders. Consequently, W out can be considered
equivalent to decoders of the NEF.

The RC approach to dynamic signal representation can only represent one
pattern at a time. Conceptors attempt to rectify this. Conceptors also use
a recurrently connected group of neurons. However, instead of the recurrent
weights being selected randomly and limited in their magnitude, the weights
are determined by linear regression such that the system is oscillates without
exterior input for all j of K input patterns. This linear regression problem is
phrased as follows:

For stable oscillation, the state with input should approximate the state without
input, which can be accomplished by finding new recurrent weights W opt

act(W recx(t) +W inpin(t) + b) ≈ act(W optx(t) + b)

Thus the recurrent weights can be found from this minimization which is solved
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as yet another Least Squares optimization problem.

W opt = argminW opt

K∑
j=1

tmax∑
t=1

(W recxj(t) +W inpjin(t+ 1) + b−W optxj(t))2

This dynamic system can then reproduce specific dynamic patterns pjin by
the modification of the recurrent weight matrix by various the Conceptor ma-
trices Cj , where j is the pattern index, such that the update rule becomes:

state(t+ 1) = Cjact(W optstate(t) + b)

such that, pout(t) = W outstate(t) = pjin(t)
(4)

Thus, Cj could also be considered as a “projection matrix” given that the
activities of the reservoir are projected onto the correct output pattern by Cj .

To find Cj , let Rj = Xj(Xj)′/L be the reservoir state correlation matrix
where Xj is the state of the neurons for pattern j for all time steps L. Let
α ∈ (0, inf) be the “aperture”, which the fidelity to the original signal that the
output should achieve.

Given that C still projects back onto the reservoir, we want to minimize the
deviations of the actual state from the projected state.

C = E
[
‖x− Cx‖2

]
As mentioned before, the degree we want C to influence the state of the

reservoir is scaled by α. This influence is taken into account by adding a term

C = E
[
‖x− Cx‖2

]
+ α−2 ‖x− Cx‖2fro

Where ‖x− Cx‖2fro is the Frobenius norm.
Using a derivation contained in Section 5.1 of [5] it is proven that C and R

have the same principal component vector orientations. Thus,

SVD (R) = UΣU ′

SVD (C) = USU ′
(5)

Additionally, the singular values of C are related to the singular values of R
by

si =
σi

σi + α−2
(6)

Equations 5 and 6 provides us a way to derive C, since R is known. This
is identical to solving a Least Squares optimization problem, wherein given R
and the output signal to reproduce, connection weights are found using SVD.
Although ideally this could be shown mathematically, this was demonstrated
using a simulation in Figure 2. Additionally, when comparing the the Conceptor
weight matrix C with the weight matrix created by

W SVD = encoders · SVD-decoders

the Root Mean Squared error between W SVD and C was an insignificant 0.058.
An illustration of the formulated Conceptor system is shown in Figure 3.
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Figure 2: Comparison of decoding result from a population of LIF neurons
showing the equivalence of using decoders found with SVD and using a Con-
ceptor matrix (to get rates) followed by decoders found using Least Squares
optimization on the original population (as opposed from to the Conceptor-
modified rates) to get a scalar value from the Conceptor-modified rates. The
results are nearly identical and both reproduce the input signal. Consequently,
it can be concluded that Conceptors reproduce the rates of the input signal and
are equivalent to weights found with SVD.
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Figure 3: Illustration of Conceptor system. Grey boxes are non-neural com-
ponents, blue circles are neural components and unlabeled arrows are direct
connections to or from neurons. The ”Initial State Injector” is required to ini-
tialize the neural system so it does not remain inactive, but this value can be
any arbitrary value that activates the majority of the neurons.
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To switch between signal, different values of C must be swapped out. This
constant dramatic modification of the recurrent weights, which are mapped onto
synaptic weights, makes this approach biologically implausible, since synaptic
weights generally undergo gradual changes.

1.1.1 Similarity to Principle 3 of the NEF

As mentioned previously, W in and W out are respectively equivalent to the en-
coders and decoders of the NEF. Aside from the aforementioned swapping out
of C, the formulation of Conceptors is remarkably similar to Principle 3 of the
NEF.

Principle 3 of the NEF defines how recurrent connection weights filtered
by synapses can be used to approximate various dynamic systems. Principle 2
defines how to find the weights defined by Principle 3.

Conceptors define recurrent connection weights that can be found using Prin-
ciple 2 of the NEF, as discussed in the previous section.

Consequently, it is justifiable to say that Conceptors are a reformulation of
Principle 3 of the NEF, but without the usual use of axonal low-pass filters to
create system dynamics and instead rely on the leaky-tanh neurons described
in 1. This dependence has various negative effects, as described in the following
sections.

1.1.2 Tuning of Memory Leak Rate

The memory leak rate (LR) of the neuron describe in Equation 1 has a significant
effect on the quality of the signal being represented in a purely feed-forward
network (Figure 4) and even more drastically in a Conceptor network (Figure 5).
Note the results in both of these figures were obtained from a modified reference
implementation of Conceptors implemented in Matlab1

The range of possible LRs is hard to justify, given they have no biological
analogue. Additionally, I was not able to mathematically derive the effect of
these neurons on the dynamic systems being represented. Given this lack of
biological and mathematical grounding, the best justification I can provide is
that the sensitivity of both the feed-forward and Conceptor systems to varying
LRs stems from the lack of inclusion of the integrating effects of LRs in any of
the derivations shown in Section 1.1.

1.1.3 Blending Between Conceptors

In addition to replicating signals, Conceptors are able to blend between signals
by mixing Conceptors using a scaling factor µ. For example, blending between
two signals a and b, enabled by the Conceptors Ca and Cb, is performed by
modifying µ in the following equation:

C = ((1− µ)Ca + µCb) (7)

1Code that was originally used to generate the results seen in https://youtu.be/DkS_
Yw1ldD4 was stripped down to it’s basic components and various bugs were corrected. Thus
I refer to the code I used as a ’modified’ reference implementation.
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(a) Noiseless Representation
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(b) Noisy Representation

Figure 4: The leaky-tanh neuron has the effect of a low-pass filter on attempts
to reproduce a sinusoidal signal.
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(a) 10 Hz Oscillator
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(b) 20 Hz Oscillator

Figure 5: The choice of a good LR becomes more important for higher frequen-
cies, where incorrect choices can cause phase shifts or decaying signals.
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(a) Blending between two sinusoids.

(b) Blending between non-sinusoidal signals.

Figure 6: Blending between two signals by modifying µ. Figures reproduced
from the original Conceptor publication [5]. The black dots are points were
µ = 1 and µ = 0, thus the signals appear in their unmodified form. The x axis
is time steps (no units are given in the original publication), while the y-axis is
the output.

For sin-waves this gives the effect of blending between frequencies, while
more irregular signals have less elegantly describable transitions, as shown in
Figure 6.

The ability to reliably recreate and blend dynamic signals in a biologically
plausible manner is essential for a complete cognitive system. This report de-
scribes how this aforementioned goal was achieved using the Neural Engineering
Framework (NEF)2.

2 Methods

The modified reference implementation of Conceptors, introduced in 1.1.2, was
compared to two approaches using the NEF in Nengo3.

2.1 Biologically Plausible Alternatives to Conceptors

The two approaches investigated using the NEF and Nengo were Rhythmic Dy-
namic Movement Primitives (rDMPs), either decoded directly from an oscillator
or decoded using forcing function taking into account a point attractor.

2.2 Rhythmic Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) are a way of planning movement along
a trajectory using dynamics. By definition, this can be any dynamic system,

2The other features of Conceptors, such as their relation to Boolean algebra, online adap-
tation and classification, are outside of the scope of this report.

3A reference implementation of Conceptors in Nengo was attempted, but ultimately failed
due to being unable to implement a population that would sustain a repeating pattern via
oscillation. The cause of this failure was narrowed down to the difficulty of implementing the
leaky-tanh neuron in Nengo, but there was no time to resolve this problem.
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Figure 7: Illustration of point attractor based Dynamic Movement Primitive
system. The oscillator provides the repeating timing while the point attractor
provides a dynamic system for fine-tuning decoding from the oscillator.

but in [3] both ramps and oscillators are used. To achieve control from the
aforementioned dynamic systems, DMPs usually use weighted Gaussian basis
functions approximating a path at each time step (ypath(tp) where 0 < tp < tend
and tend is the length of the path) to dictate the forces on a moving point as
it goes from the starting point to the finishing point, with a point attractor
leading the path to the finishing point. This can be described in mathematical
terms, as a point attractor modified by a force:

ÿ = αy(βy(g − y)− ẏ) + fin(tp) (8)

Where is y is the output of the system and the position of the moving point
trying to approximate ypath in response to the point attractor forces at each
time-step, g is the position of the point attractor, αy and βy are (in this report,
constant) gain terms of the point attractor, and fin(tp) is the forcing function
that modifies the path that the moving point follows on it’s way to the point
attractor.

The forcing function is typically implemented by weighted Gaussian basis
function that are sequentially activated by a ramp function who’s output is tp.
In a neural implementation, the basis functions are leaky-integrate-fire neuron
tuning curves and the weights are the decoding weights that correspond to the
aforementioned neurons.

To imitate a desired path, which is the goal of this DMP use case, the forcing
function needs to be solved in terms of the given path y and the point attractor
location and gains by using Equation 8.

Rhythmic Dynamic Movement Primitives (rDMPs) are a variation of DMPs,
where instead of having a discrete goal, a repeating path is followed. Conse-
quently, instead of a ramp function activating the basis functions, a repeating
ramp is used by taking the arctan of an oscillator moving around the circle and
spacing the basis functions between −π and π. This repeating ramp is the input
tp of fin(tp). This complete system is shown in Figure 7.

In the case of rDMPs, fin(tp) is calculated by first defining all variable
and constants in Equation 8. The position of the point attractor is heuristically
determined to be the center of the input signal ypath discretized into an arbitrary
amount of sample points:
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let αy = 10, βy = 2.5

g =

∑
ypath
tend

(9)

To define the desired path of the point, ypath, in the domain of the oscilla-
tor output, x, we use scipy.interpolate. This function is represented at
interp() in the following equations:

−π < x < π

yip = interp(x, ypath)

ẏ =
dyip
dx

ÿ =
d2yip
dx2

(10)

After the variable and constants are defined, fin(tp) can be found by solving
Equation 8:

fin(tp) = ÿ − αy(βy(g − yip)− ẏ) (11)

For a simpler implementation of rDMPs, it is possible to remove the point
attractor from Equation 8. This allows for a path to still be defined via a
forcing function which can be calculated by the usual NEF method of decod-
ing a transform given an input signal and a desired output signal. In simpler
language, decoders are calculated directly from an oscillator’s output and the
desired output signal. This simplified, but limited implementation of an rDMP
will be referred to as Direct DMPs (dDMPs). Although dDMPs are simpler,
this comes at the cost of being unable to change the dynamics on the fly, as
there is when using the system defined by changing any of the variables in 11.
This aforementioned flexible and adaptable attractor-based implementation of
rDMPs will be referred to as aDMPs.

2.3 Switching Between Dynamic Movement Primitives

To switch between the rDMPs, two methods were attempted. The first was
simply to switch between two output patterns by inhibiting one output neuron
population while releasing the inhibition on the other. The switch was per-
formed by linearly changing the inhibition level from -1 to 0 for one population
and vice versa for the other population. The second was to multiply the output
of each pattern by a scalar in a similar manner as µ in Equation 7. The switch
was performed by linearly changing the scalar from 0 to 1 for one output and
vice versa for the other output.

3 Comparison of Results

The representational ability and blending ability of each were the metrics for
comparison. For representational ability, the Root Mean Square Error (RMSE)
from the original signal, after phase shifts, was the evaluation metric. For
blending, the transitions between two signals (sin(2π6t) and 0.5 cos(2π10t)),
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Signal Frequency (Hz) 2 6 10 15 20

Leak Rate LR 0.05 0.1 0.4 0.6 0.6
Oscillator Frequency (Hz) 1 3 2.5 3.75 5

Table 1: Heuristically set variables for dDMPs and Conceptors that greatly
improve their performance.

given a fixed time of 1 second to transition (between the times 0.5s and 1.5s in
the figures), were compared qualitatively in terms of smoothness of transition.

All neural networks used a total of 600 rate neurons. In the case of dDMPs,
this meant 600 neurons were used in the oscillator. For Conceptors, this meant
the reservoir contained 600 neurons. Finally, for aDMPs 300 neurons were used
for the oscillator and 300 neurons were used for the attractor network. Nengo
networks used LIF rate-based neurons, while Conceptors used the leaky-tanh
neurons defined in Section 1.1.

3.1 Representing Signals

For sinusoidal signals, the ideal method for representation depended on the
frequency of the signal.

For low frequency signals, dDMPs were superior, given that there are based
off an ideal oscillator which is already oscillating at half the desired frequency
for signals at 2Hz and 6Hz, and oscillating at one quarter the desired frequency
for signals at 10Hz, 15Hz and 20Hz, as shown in Table 1.

Conceptors were much better at representing high frequency sinusoidal sig-
nals, as shown in Figure 8. This result is partially because Conceptors fail to
reach the desired amplitude at low frequencies, as can be seen in the compari-
son in Figure 9. The reason for this is unknown, but most likely has to do with
setting an appropriate LR, as discussed in Section 1.1.2. This occurred despite
efforts to manually choose an ideal value manually, as shown in Table 1.

The success of Conceptors when compared dDMPs is due to how this ap-
proach take time into account when solving for their connection weights. Con-
ceptors modify the signal to approximate it’s output. Conceptors achieve this
by mapping from individual oscillating neuron activities to an output. How-
ever, dDMPs instead depend on mapping an oscillator directly onto an output
signal, which gives extremely good results as long as the reference oscillator can
achieve the frequency of the output signal to a good enough degree, which was
not possible with the 15Hz and 20Hz signal.

The abysmal performance of aDMPs is due to the fact that they didn’t have
the aforementioned benefit possessed by dDMPs and Conceptors which allowed
them to compress repeating information. The aDMP attempts to optimize for
each bump of a sinusoid separately.

Despite the results shown in Figure 6. No evidence was found for Conceptors
being able to approximate jagged signals in any way, regardless of number of
neurons, LR, sparsity of recurrent weights, aperture values, frequency of signal,
neuron memory or signal magnitude range. This was tested by setting the
input signal to a saw-tooth wave. Even when filtered with a low-pass filter, the
Conceptor still failed to replicate the oscillation, as shown in Figure 10. This
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Figure 8: RMSE of various signal representation approaches across different
frequencies of a sinusoid signal. Ticks on bars represent bootstrapped 95%
confidence intervals.

is probably because the activities of the neurons were too limited. Given that
the saw-tooth wave can only be expressed as an infinite series of sinusoids, the
frequencies required were not found during the Conceptor calculation and the
approximation failed.

3.2 Blending Between Signals

The blending, shown in Figure 11, accomplished by Conceptors by changing µ
linearly from 1 to 0, is distinct from the blending accomplished with dDMPs.
Additionally, it does seem to replicate the results in Figure 6, other than the
various problems covered in the previous section. However, once the frequency
of the two target signals was increased, blending also caused a reduction in
signal magnitude at the interim frequencies to the point that no signal is output
(Figure 12), showing that the description of blending being frequency control
used in [5] is too simplistic.

It is unclear whether this blending behaviour is actually useful. When scaled
up to 61D to represent a human skeleton [5], where each Conceptor controls a
dimension which represents an angle between joints with no external forces act-
ing on the skeleton, the transition between various movements patterns appear
jerky and hesitant 4. This is even after much fine manual tuning of the transi-
tions between different patterns. Consequently, final judgment on what an ideal
blending looks like should be withheld until an application is chosen, such as
human transitions between movement patterns [1]. The investigation of these
various applications and comparison to the various blending methodologies are
outside of the scope of this report.

4To examine the output, see the video https://www.youtube.com/watch?v=DkS_
Yw1ldD4
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(a) Generating lower frequencies.
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(b) Generating higher frequencies.

Figure 9: Generated signals at each frequency with the lowest RMSE for each
representation method. Note that dDMPs can occasionally generate excellent
signals even in higher frequencies, but the challenge is figuring out a means to
do so reliably.

Figure 10: Conceptor failing to replicate the input signal of a low-pass filtered
sawtooth wave.
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Figure 12: Drastic loss of magnitude when using Conceptors to blend between
two high frequency signals. The transition occurs between 0.5s and 1.5s as
before.
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4 Discussion

This report demonstrated that the dynamic signal representation and combi-
nation, previously accomplished Conceptors, could be replicated to a certain
degree in a biologically plausible manner using the NEF. It also highlighted the
limitations of the various approaches when representing signals in the NEF. Ul-
timately, Conceptors far surpassed the NEF in representation of high-frequency
sinusoidal waves, but were not able to represent non-sinusoidal periodic sig-
nals and required significant tuning. Future work should focus on transferring
Conceptors to Nengo to see if switching between Conceptor matrices can be
accomplished via inhibition and with spiking neurons, as well as exploring Con-
ceptors using Systems Characterization to diagnose the cause of their various
deficiencies.

The preliminary biological plausibility allows for many advantages, including
comparison with neuroanatomical mapping. For example, the DMP populations
of this model could map onto the Central Pattern Generators [2], which are neu-
ral circuits in the human spinal chord that assist with the creation of rhythmic
movements. Obviously, a sophisticated model of human movement needs to be
consulted, to match neurological data exactly, to store the patterns more realis-
tically and to match the dynamics. That being said, at least the approach with
the NEF offers this possibility to match this biological data, whereas Conceptors
do not.
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