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Abstract

The ability to improve in speed and accuracy as a result of repeating some task is an impor-

tant hallmark of intelligent biological systems. Although gradual behavioral improvements from

practice have been modeled in spiking neural networks, few such models have attempted to

explain cognitive development of a task as complex as addition. In this work, we model the pro-

gression from a counting-based strategy for addition to a recall-based strategy. The model con-

sists of two networks working in parallel: a slower basal ganglia loop and a faster cortical

network. The slow network methodically computes the count from one digit given another, cor-

responding to the addition of two digits, whereas the fast network gradually “memorizes” the

output from the slow network. The faster network eventually learns how to add the same digits

that initially drove the behavior of the slower network. Performance of this model is demon-

strated by simulating a fully spiking neural network that includes basal ganglia, thalamus, and

various cortical areas. Consequently, the model incorporates various neuroanatomical data, in

terms of brain areas used for calculation and makes psychologically testable predictions related

to frequency of rehearsal. Furthermore, the model replicates developmental progression through

addition strategies in terms of reaction times and accuracy, and naturally explains observed

symptoms of dyscalculia.
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1. Introduction

Adaptability and scalability are two central challenges in cognitive modeling. Building

a model that performs some behavior is a daunting enough task, even without considering

how it might improve over time. This is made significantly more challenging when build-

ing a large-scale biologically plausible model that uses spiking neurons to represent and

communicate information over time.

One example of such a biologically plausible model is the Semantic Pointer Archi-

tecture Unified Network (Spaun), which is currently the largest behaving model of

the human brain (Eliasmith et al., 2012). This model flexibly performs eight different

cognitive tasks by receiving images of handwritten digits through its simulated retina

and outputting responses by drawing using its simulated arm. This model makes

some progress in addressing the challenge of scalability (Eliasmith, 2013), but it

lacks the ability to learn from previously experienced cognitive tasks to permanently

improve its performance (Spaun only changes its long-term connection weights during

a simple reinforcement learning task). In this work, we show that one task from

Spaun’s repertoire, addition by counting, can be extended to exhibit this cognitive

ability.

For addition by counting, the model is presented with two digits and asked to draw

the digit that corresponds to the sum of these two digits. The “counting” strategy

methodically computes the result by adding one to a digit, for the number of times

indicated by the other digit. In Spaun, this is accomplished by a number of structures

that function together. Visual cortical areas compress the representation of a given

image into a semantic representation, referred to as a Semantic Pointer (SP). Pre-

frontal cortical areas transform these pointers, while maintaining partial results in

working memory, and a basal ganglia and thalamus control loop select actions to

coordinate and drive the behavior of the system. The cortical areas of Spaun should,

but currently do not, recognize and learn from previous instances of this problem.

Including such adaptation should translate to performance improvements in both speed

and accuracy.

DeWolf and Eliasmith (2013) have presented a neural model in which a simple

motor skill is consolidated into cortex via repeated practice. However, the skill being

learned in that case cannot be extended to solve the addition task because it remains

unclear how a simple motor action could be generalized to count from one digit to

another. Here, we consider how consolidation can occur for more sophisticated repre-

sentations and demonstrate that such a perspective can help explain more complex

cognitive phenomena. This is accomplished by proposing a spiking neural model that

displays gradual performance improvement on the addition-by-counting task.

A previous model of this task has been implemented in ACT-R (Lebiere, 1999), how-

ever, this model has no neuroanatomical mapping and does not address the problem of

transitioning between strategies.
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2. Mathematical development

The development of numeracy in children is not a simple progression of skills. For

instance, children learn to count before they understand how sets relate to numbers. As

well, it is thought that after learning to count, they progressively learn the relationship

between set sizes and numbers until the age of 5, after which they have a complete

understanding of the number scale (Sarnecka & Carey, 2008). This same sort of complex

learning development can be observed in children learning addition. Typically, children

progress through various strategies before finally memorizing the results of addition, as

shown in Table 1 (Siegler, 1987).

The Counting strategy involves choosing the larger number and incrementing it a num-

ber of times equal to the smaller number. The Recall strategy is where the two numbers

form an association with a previously memorized answer, which is then recalled from

long-term memory. Other strategies have been identified, although we focus here on

recall and counting because the greatest developmental change is seen between these two

strategies. In addition, for the sake of simplicity, we focus on the progression from the

counting strategy to recall, using sums less than 10. As we demonstrate, the model ini-

tially relies entirely on the counting strategy, but it gradually learns the recall strategy,

which improves reaction time and accuracy, consistent with the data from Tables 2 and

3, respectively.

To this point we have characterized the typical developmental path for children. How-

ever, there are individuals who suffer from dyscalculia. Dyscalculia is a learning disabil-

ity characterized by various problems with numeracy, one of which can be understood as

difficulty making the transition from counting to retrieval. Our model demonstrates how,

without a parallel learning mechanism, symptoms of dyscalculia can arise. In particular,

our model explains increased activation of the prefrontal cortex compared to individuals

with normal numeracy (Kucian & von Aster, 2015) and a lack of progression to recall-

based strategies.

3. Neural representation of digit semantics

To build our model, we make use of the Neural Engineering Framework (NEF; Elia-

smith & Anderson, 2003) and the Semantic Pointer Architecture (SPA; Eliasmith, 2013)

that were both used to build Spaun.

Table 1

Percentage of addition strategy use by grade level (summarized from Siegler, 1987)

Grade Level Counting (%) Recall (%) Guess or No Response (%) Other (%)

Kindergarten 30 16 30 24

Grade 1 38 44 8 10

Grade 2 40 45 5 11
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The NEF may be understood as a “neural compiler” for mathematical functions using

vector spaces. The presented model relies on two key principles of the NEF as a method

for constructing networks of spiking neurons and connection weights from a mathematical

description of the system. The first principle describes how a vector can be mapped onto

a distributed representation over neurons. The second principle characterizes how connec-

tions between neurons can transform these vectors.

A vector x(t) is represented by encoding it into the spiking activity of a population of

neurons. Each neuron i has an encoding vector ei (which can be understood as a preferred

direction in the vector space), a gain ai, and a background current Jbiasi . These parameters

determine how the input vector is translated into the input current JiðtÞ to a neural nonlin-

earity Gi½��. For our work, this neural nonlinearity is the leaky integrate-and-fire model,

which converts the input current into a neural spike train aiðtÞ.
aiðtÞ ¼ Gi JiðtÞ½ �; JiðtÞ ¼ aiei : xðtÞ þ Jbiasi ð1Þ

To decode an approximation of the vector back from these spike trains, they are first

convolved with a low-pass filter h(t) (a decaying exponential modeled after the postsy-

naptic current) and then multiplied by a decoding vector di:

x̂ðtÞ ¼
X
i

diðai � hÞðtÞ ð2Þ

The decoders di are found using regularized least squares optimization to minimize the

error over the range of inputs x: Z
x� x̂k k2dx ð3Þ

To describe how two neural ensembles are connected, we define a weight matrix as

the outer product of the encoders and decoders xij ¼ ei � dj. The second principle then

Table 2

Median solution times (seconds) per addition strategy use by grade

level (summarized from Siegler, 1987)

Grade Level Counting Recall

Kindergarten 6.0 s 3.9 s

Grade 1 6.9 s 2.1 s

Grade 2 3.9 s 1.8 s

Table 3

Percentage of errors per addition strategy use by grade level (summa-

rized from Siegler, 1987)

Grade level Counting (%) Recall (%)

Kindergarten 19 29

Grade 1 4 17

Grade 2 3 7
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shows that the input current to neuron i may be rewritten as a weighted summation of its

postsynaptic potentials, allowing for the connection of multiple populations of neurons:

JiðtÞ ¼
X
j

aixijðaj � hÞðtÞ þ Jbiasi ð4Þ

To apply arbitrary transformations to the vector using these connections, we can mini-

mize the decoding error for the desired function:

Z
f ðxÞ � f̂ ðxÞ�� ��2dx: ð5Þ

Together, these two principles allow us to construct spiking neural models of arbitrary

functions of vector spaces.

To apply the NEF to cognitive models, the SPA suggests specific architectural compo-

nents and organization as well as a general kind of representation called a SP. SPs are

compressed neural representations that can be efficiently manipulated, transformed, and

dereferenced to retrieve deep semantic information. It has been suggested that this

approach addresses the symbol grounding problem by defining the semantics of a neural

representation as resulting from the compression of sensory information as well as con-

ceptual relations (Eliasmith, 2013). Consequently, the SPA lends itself especially well to

representing concepts which are grounded in multiple modalities but unified in a single

representation. In this model, the SPs are used to represent digits, which have been shown

to be grounded in auditory and visual modalities (Nieder, 2012), but also include concep-

tual relationships (e.g., TWO comes after ONE but before THREE). Conceptual relation-

ships are captured in the SPA by adopting a compression operator from a specific type of

Vector Symbolic Architecture (Gayler, 2004) called a Holographic Reduced Representa-

tion (Plate, 1995).

4. Modeling the counting strategy

Although Spaun serves as the starting point for our model, it is not practical to simu-

late all 2.5 million of its neurons. Instead, a counting circuit based on Spaun’s design

was implemented. As shown in Fig. 1, after a question input is received, the procedure

consists of three main steps:

1. The digit contained in the working memory neural population is routed to a “trans-

formation system.”

2. The digit is transformed by a heteroassociative “incrementing memory” to produce

the SP corresponding to the incremented digit.

3. The incremented number is returned to working memory.

This process is continued until the “Counts finished” are equal to the “Total counts to

take.” At which point the value in “Count result” is routed as the final answer to the output.
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These steps are controlled by an action selection system implemented in the basal gan-

glia and thalamus (Stewart, Choo, & Eliasmith, 2010) in a manner similar to Spaun.

To increment a digit, a predefined heteroassociative memory is used to associate each

SP with its incremented pointer. This is implemented using a single population of neu-

rons, with encoders tuned to each vector of the numerical vocabulary and decoders cho-

sen to apply a transform to the output to compute the incremented SP. Finally, the output

layer uses mutual inhibition to form a winner-take-all mechanism, which ensures the

transformation system returns only a single pointer. This design is different from Spaun’s,

which relied on the repeated convolution of a single vector to indicate a count. While

both approaches are viable, an associative memory is more effective for simpler, low-

dimensional models.

The SP corresponding to each digit is taken from a random 10-dimensional orthonor-

mal basis. This ensures that no prior information is given to bias the relationship between

the 10 digits. Initially, the model only knows how to increment a digit, as is the situation

for learning addition during childhood using solely the counting strategy.

Learning will occur in a heteroassociative memory that is identical to the aforemen-

tioned predefined memory, except its associations are learned with experience. Conse-

quently, the action selection mechanism will not need to iterate through its associations

to compute the desired result.

5. Memorization via reinforcement learning

The counting circuit that employs the predefined memory is slow as information is rou-

ted back and forth at the rate of subvocal rehearsal. We thus refer to the counting portion

of the model as the “Slow-Net.” In the model, other cortical areas consolidate the func-

tion of the Slow-Net by memorizing its eventual responses. The portion of the network

responsible for the storage and subsequent retrieval of learned responses will be referred

to as the “Fast-Net.”

TWO

THREE

ZERO

ONE

THREE

Incrementing 
Memory

Incrementing 
Memory

Working Memory
Total counts to takeCount result Counts finished

Basal Ganglia 
and Thalamus

Fig. 1. Overview of the addition-by-counting procedure. See text for details.
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The purpose of the Fast-Net is to learn to associate the two digits provided as input to

the Slow-Net with the Slow-Net’s eventual response. This heteroassociative memory

computes a discontinuous high-dimensional function with respect to the vectors that rep-

resent each digit. Specifically, it computes the function mapping from the input of two

addend vectors concatenated together to the output vector of the answer. Knight, Voelker,

Mundy, Eliasmith, and Furber (2016) have shown that by combining the supervised pre-

scribed error sensitivity (PES; MacNeil & Eliasmith, 2011) learning rule with the unsu-

pervised Vector Oja (Voja; Voelker, Crawford, & Eliasmith, 2014) learning rule, we can

scalably and efficiently learn such complex functions in the NEF. The Fast-Net leverages

the unsupervised learning rule to efficiently represent the incoming addends and uses the

supervised learning rule to learn the correct sum from the Slow-Net.

Specifically, the PES learning rule minimizes the difference between the output of a

neural population and its desired value, by adjusting its decoders (di from Eq. (2)) in

response to an error signal r and given a learning rate j:

Ddi ¼ jrai ð6Þ

However, for discontinuous high-dimensional functions such as the desired heteroasso-

ciative memory, this supervised learning rule is insufficient, as shown in Fig. 2. This is

because a neuron will often fire in response to multiple inputs, in which case its decoder

will be adjusted to completely overwrite its previous association (the standard “catas-

trophic forgetting” problem). To avoid this, a neuron should only fire for a single input,

which is achievable by selecting the encoders (ei from Eq. (1)) to be equal to the SPs for

each of the digits and defining the neuron’s threshold ahead of time, as is done in the

predefined heteroassociative memory (Stewart, Tang, & Eliasmith, 2011). However, this

would assume that the area of cortex designated to learn the addition task is already

aware of the possible SPs within the Slow-Net.

To keep our approach general, instead of manually specifying these encoders, we

use the Voja learning rule to form a sparse encoding of the possible inputs as they

are presented to the Fast-Net. This is achieved by adjusting the encoders of any

active neurons to become selective to only the current input. This prevents the catas-

trophic forgetting demonstrated in Fig. 2, in turn allowing PES to learn the correct

output without overwriting past associations. This has been demonstrated by Knight

et al. (2016) to scalably recall over 2,000 associations using 50 neurons per associa-

tion in simulation, and over 190,000 associations in theory. Given a learning rate g
and an input x, the encoder e of neuron j are adjusted according to Voja as follows:

Dej ¼ gajðx� ejÞ: ð7Þ

To ensure the learned heteroassociative memory is learned correctly, the sparsity of

the population is determined by setting the thresholds of the neural tuning curves. Here,

we set the thresholds according to the maximum dot product between distinct inputs. This

procedure is described more generally by Knight et al. (2016).
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In our model, the population of neurons in the Fast-Net memory continually learns to

represent the input digits by adjusting its encoders via Eq. (7), while its decoders adjust to

associate its input with the output of the Slow-Net via Eq. (6). To enable this simultaneous

learning and operation, the Fast-Net is placed in parallel to the Slow-Net, as shown in

Fig. 3. Both networks receive the same input, but the answer from the Slow-Net is projected

to modulate the output of the Fast-Net. This modulatory error signal is a dopaminergic error

signal that is sent whenever the Slow-Net responds with an answer, which then provides the

feedback for learning via PES. Importantly, the network itself controls this error signal,

using the same mechanisms as are used for controlling the steps of the counting process in

the Slow-Net. This internal control of the dopaminergic error signal can be thought of as a

type of metalearning (Doya, 2002) or controlling how to learn. In addition, such feedback

could also come from the environment (e.g., in the form of a teacher correcting the student

who is drilling addition facts), but this extension is outside the scope of this study.

6. Results

The learning rate of the heteroassociative memory can be adjusted to model develop-

mentally plausible learning. At high learning rates the model learns mappings after being

shown only a single example and at lower learning rates it gains confidence gradually,

Fig. 2. Comparing two methods of learning heteroassociative memories: supervised learning only (PES only)

versus both supervised and unsupervised learning (PES and Voja). An association between a 20-dimensional

input and a 10-dimensional output is learned every 300 ms. We plot the error between the desired output and

the learned association. The “PES only” approach suffers from catastrophic forgetting, which demonstrates

the necessity of the Voja unsupervised learning rule. Simulations were run using Nengo 2.1 (Bekolay et al.,

2014). See Fig. S1 for a decoder level of view.
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covering the spectrum of human variability and demonstrating the versatility of the

heteroassociative memory. In the following simulations we chose a lower learning rate to

imitate the gradual accumulation of experience typical in development.

The model was built and simulated using Nengo 2.1 (Bekolay et al., 2014), whereas

the results were plotted using Seaborn 0.7.1 (Waskom et al., 2016). The results of the

Slow-Net, which implement the counting strategy, are shown in Fig. 4.

As expected, the magnitude of error between the answer from Fast-Net and the correct

answer decreases with rehearsal, as shown in Fig. 5. Each epoch of training consists of

20 randomized example additions with no repetition. Given the fast learning rate of the

model, after each epoch there is a significant drop in error (during each subsequent

epoch, the model is seeing problems it has encountered before).

Which network drives the overall response is determined by a separate basal ganglia

control loop contained in the Answer Output module of Fig. 3. After the magnitude of

error between the Fast-Net output and any numerical output drops below the arbitrarily

set certainty threshold of 0.5, the Fast-Net response will drive the model’s response

instead of Slow-Net, as it is confident in its answer. Any decrease in error magnitude past

the certainty threshold reflects an increase in the certainty of the answer.

In addition, once the Fast-Net becomes confident enough in its responses to override

the Slow-Net, the speed of responses becomes faster and more uniform, as shown in

Basal 
Ganglia 

and 
Thalamus

Question
Input

Answer
Output

Working 
Memory

Fast-Net

Slow-Net

Modulatory 
Error Signal

Fig. 3. High-level model architecture, featuring the parallel Slow-Net and Fast-Net. The input is provided to

both networks simultaneously. The Fast-Net learns its responses via a modulatory error signal projected from

the output of the Slow-Net.
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Fig. 6. The fact that reaction times regularize with transition to a recall-based strategy

matches experiments investigating addition strategies (Siegler, 1987). In over 100 trials,

the Slow-Net only failed three times to produce a correct answer and instead overcounted.

Fig. 6. Reaction times decreasing with rehearsal as the Fast-Net takes over for the Slow-Net for increasingly

more additions. Note that these reaction times do not take into account motor planning for communicating

the result and are thus much faster.

Fig. 5. Error magnitude in the Fast-Net decreasing with training received from the feedback of each trial.
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These three failures are omitted from Fig. 6, as they are considered as outliers which

could either be corrected by tweaking the model further or by implementing an introspec-

tive error monitoring mechanism.

To gauge the effects of previous experience on the learning process, we also ran an

experiment where the Fast-Net was simulated separately and trained on a set of addition

facts that only used the set 1, 2, 5. These facts were repeated until convergence. After

this initial training, we presented new addition problems where either none or one of the

addends belonged to the set 1, 2, 5.

Our model predicts proactive interference from previously learned addition facts with

familiar addends. As shown in Fig. 7, the new problems with unfamiliar addends were

learned more accurately. This is a direct consequence of the SP representation chosen for

the addends. In particular, as we chose to concatenate the two digits to form the inputs to

the heteroassociative memory, the SPs with common addends have a higher dot-product

similarity than those without any common addends. This results in fewer encoders being

available for these SPs after Voja has converged. Binding the two addends together, as in

a Holographic Reduced Representation, would result in statistically different SP similari-

ties. Psychological experiments involving patterns of interference during development

would help infer which representation is more plausible.

7. Neuroanatomical mappings and dyscalculia

As discussed in Spaun’s mapping of counting (Eliasmith et al., 2012), parietal areas

are more active for stable, learned transformations, while prefrontal areas are more active

Fig. 7. Heteroassociative memory accuracy (similarity between memory output and desired output) given

various addends and after training. Ticks on bars represent bootstrapped 95% confidence intervals.
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for transient, working memory representations. Given that the Fast-Net responses eventu-

ally replace those from the Slow-Net, we would expect that with practice brain activity

will move from the prefrontal cortex to frontal-parietal areas. Although this is quite diffi-

cult to measure during the natural development of a child, this hypothesis is supported by

a few observations.

First, when doing mental calculation, age is correlated with the use of parietal brain

areas. However, it is inversely correlated with the use of prefrontal and hippocampal

brain areas, as well as the use of the dorsal basal ganglia area (Rivera, Reiss, Eckert, &

Menon, 2005). Within the model, this transition can be framed as older children using

fewer iterative processes (no use of working memory in prefrontal, no iterative process

control requiring the basal ganglia, and no loading of instructions from the hippocampus)

and more memorization.

Second, those with dyscalculia show greater activation of the prefrontal cortex com-

pared to individuals with normal numeracy (Kucian & von Aster, 2015). Although this

model make no claims about why dyscalculia occurs, given that it is a complicated dis-

ability usually accompanied by various comorbidities and no direct cause (Rubinsten &

Henik, 2009), it does provide part of a possible explanation as to why such compensation

occurs. Specifically, those with dyscalculia are unable to consolidate the functional role

of the prefrontal cortex during the counting task within the frontal-parietal region and

must instead rely on their working memory. Given an excessively noisy input, inaccurate

feedback, or inappropriate modulation of the error signal, the Fast-Net could fail to learn

the mapping between addends and sum. Consequently, there would be limited progression

from counting to recall and a continued dependence on working memory.

8. Discussion and conclusions

We presented a biologically plausible model that progresses from a methodical counting

procedure to recalling the response for an addition task. As specified in Table 3 and shown

in Fig. 5, the accuracy of the Fast-Net memory progresses from noisy to accurate. Once a

sufficient accuracy threshold is reached, the memory takes over the process of addition from

the Slow-Net, increasing the reaction times, as specified in Table 2 and shown in Fig. 6.

The model as presented is clearly limited in several respects. For instance, numerical

representation in the brain consists of more structure than the randomly selected orthonor-

mal vectors used here. This assumption is reasonable for small magnitudes, but it is

untenable for numerical representation in general. For instance, there is evidence that

neurons tuned to numerical size comparisons are proportional to a log scale and can be

highly sensitive to task saliency (Nieder & Dehaene, 2009). Capturing such properties

will require different numerical representations.

Although the model proposes one possible mechanism for parallel learning, additional

mechanisms are required in more complex situations, such as chunking sequential motor

commands (Ramkumar et al., 2016). Many frameworks have been proposed for accom-

plishing such tasks (Verwey, Shea, & Wright, 2015); however, we are unaware of any that
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use spiking neurons. One potential mechanism is a neural stack-like memory structure that

produces compressed representations of action plans (Arsalidou & Taylor, 2011). The

resulting SPs could be used within our model to learn associations between action plans.

Finally, this model only describes a handful of the brain areas associated with numerical

calculation. One of the most surprising areas involved in addition is the cerebellum. It has

been suggested that cerebellar activity might be a developmental artifact persisting from

when addition is first learned as a physical combination of objects (Blouw, Eliasmith, &

Tripp, 2016). To model cerebellar involvement, counting and grouping objects would need

to be rehearsed via explicit motor plans. This could be captured with a more in-depth model

that includes a motor control hierarchy and a visual system similar to those found in Spaun.
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