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Time is a central dimension against which perception, action, and cognition play out. From an-
ticipating when future events will happen to recalling how long ago previous events occurred,
humans and animals are exquisitely sensitive to temporal structure. Empirical evidence seems
to suggest that estimating time prospectively (i.e., in passing) is qualitatively different from
estimating time in retrospect (i.e., after the event is over). Indeed, computational models that
attempt to explain both prospective and retrospective timing assume a fundamental separation
of their underlying processes. We, in contrast, propose a new neurocomputational model of
timing, the Unified Temporal Coding (UTC) model that unifies prospective and retrospective
timing through common principles. The UTC model assumes that both stimulus and timing
information are represented inside the same rolling window of input history. As a consequence,
the UTC model explains a wide range of phenomena typically covered by specialized models,
such as conformity to and violations of the scalar property, one-shot learning of intervals,
neural responses underlying timing, timing behavior under normal and distracting conditions,
common capacity limits in timing and working memory, and how timing depends on attention.
Strikingly, by assuming that prospective and retrospective timing rely on the same principles
and are implemented in the same neural network, a simple attentional gain mechanism can
resolve the apparently paradoxical effect of cognitive load on prospective and retrospective
timing.
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Time features prominently in most of our everyday
activities. From waiting for a pot to boil to suddenly realiz-
ing that a pleasant conversation ran on for much longer than
expected, time is one of the most fundamental dimensions of
our mental lives. But despite decades of formal theorizing
about ‘the sense of time’, a clear consensus about underly-
ing cognitive and neural mechanisms is still lacking. Recent
modelling efforts with recurrent neural networks (RNNs)
have generated excellent fits to complex neural data, but their
underlying representational and computational principles are
often difficult to probe. Further, most models of timing have
focused exclusively on prospective timing (e.g., waiting for
the pot to boil), leaving retrospective timing (e.g., recalling
the duration of the conversation) in need of a coherent expla-
nation. The few theoretical approaches and computational
models that have attempted to explain retrospective timing
suggest that prospective and retrospective timing are related,
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but essentially distinct processes. In this paper, we propose a
new neurocomputational model of timing, the ‘Unified Tem-
poral Coding’ (UTC) model, with clear underlying represen-
tational and computational principles that propose a unified
account of prospective and retrospective timing.

This introduction is structured as follows. First,
we will outline some basic empirical phenomena related to
prospective and retrospective time estimation. We will focus
on the differences between both types of timing, and discuss
theoretical perspectives related to these differences. Next, we
will discuss several classes of models that have attempted
to explain these phenomena, and finally introduce our own
model, the Unified Temporal Coding (UTC) model.

Time in Passing and Time in Retrospect

Unlike most modern clocks that keep time in a
highly precise and accurate fashion, time estimation in hu-
mans and non-human animals is modulated by a variety of
external and internal factors. Most notably, subjective es-
timates of time depend on whether time is estimated as it
passes or in retrospect. This insight is far from new, as
William James (1890) aptly characterized in The Principles
of Psychology:

In general, a time filled with varied and interest-
ing experiences seems short in passing, but long
as we look back. On the other hand, a tract of
time empty of experiences seems long in pass-
ing, but in retrospect short (p.320)

James’ distinction between ‘time in passing’ and ‘time in ret-
rospect’ has become a primary distinction in the time percep-
tion literature, where they are commonly termed ‘prospec-
tive’ and ‘retrospective’ timing (Hicks et al., 1976).

In prospective timing paradigms, subjects are in-
structed beforehand to pay attention to the duration of in-
dividual stimuli or the duration of the task, and are asked
to give a temporal estimate after the interval has ended. In
retrospective paradigms, subjects are unaware that temporal
features are important for the task beforehand, which is only
revealed when they are asked to estimate the interval after it
is already over. For instance, researchers have employed list
memory paradigms to study differences between prospective
and retrospective timing (e.g., Poynter, 1983). Subjects are
presented with a list of items that they have to remember. In
the prospective condition, subjects are given the additional
task to track the duration of the memory encoding phase,
whereas the retrospective group is kept oblivious about this
additional task. After the items have been presented, both
groups of subjects report the duration of the encoding phase.
In the prospective condition, subjects can form an estimate
of elapsed time as the interval unfolds, while subjects in the
retrospective condition have to construct an estimate in hind-
sight. A common finding is that retrospective estimates are

both less accurate (lower) and less precise (more variable)
than prospective estimates (Block & Zakay, 1997).

A major theoretical issue in the literature is whether
prospective and retrospective timing are different in degree or
different in kind. Brown (1985) has argued that the same pro-
cesses underlie timing performance in prospective and retro-
spective conditions (i.e., similar or identical "in kind"), but
that they differ in the degree of attention paid to temporal or
stimulus information, respectively. According to this view,
time estimates are constructed from encoding temporal cues,
such as salient changes (e.g., Poynter & Homa, 1983) or
event structure (e.g., Brown & Boltz, 2002). In a prospective
condition, the task instructions ensure that sufficient atten-
tion is focused on the timing task to ensure reasonable levels
of accuracy. In retrospective conditions all attention will be
directed towards the main (or a distracting) task, resulting in
less frequent and less consistent encoding of temporal cues,
resulting in shorter and more variable time estimates. As
dual-task conditions can have similar effects on prospective
and retrospective timing (e.g., Brown & Stubbs, 1992), this
is seen as support for the view that prospective and retrospec-
tive timing only differ in degree of temporal processing.

In contrast, Block et al. (2010) argue that prospec-
tive and retrospective timing rely on categorically different
kinds of processes. In their view, not dissimilar to the view
proposed above, prospective timing is based on an internal
clock mechanism that needs attention to function properly.
Zakay and Block (1995) propose an attentional gate that con-
trols how fast ‘ticks’ pass to an accumulator. When attention
is directed to time, the gate opens, allowing more ticks to
pass and leading to longer time estimates. When attention
is diverted away from time, the attentional gate narrows, al-
lowing fewer ticks to pass, explaining why prospective time
estimates are lower in attention-demanding dual-task condi-
tions. Conversely, Block et al. (2010) propose that retrospec-
tive estimates are based on the reconstruction of past events
through memory retrieval. Time judgements are constructed
by estimating how many contextual changes have happened
during the event: More contextual changes lead to longer
time estimates (Block & Reed, 1978). When the primary task
is more demanding (i.e., higher cognitive load), more atten-
tion is focused on incoming stimuli, increasing the number
of contextual changes that are encoded and remembered, in-
creasing time estimates. Supporting this dual view of timing,
a seminal meta-analysis on the effect of cognitive load on
prospective and retrospective timing has shown that prospec-
tive estimates decrease under higher cognitive load, whereas
retrospective estimates increase under higher cognitive load
(Block et al., 2010).

This interaction effect is an important explanatory
target for any formal model attempting to jointly explain
prospective and retrospective timing. As we will see later, the
computational models that have explained the effects of cog-
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nitive load on timing typically side with the categorical view
advanced by Block et al. (2010) by proposing that cognitive
load affects separate processes. We will propose a theoretical
alternative that demonstrates that cognitive load could affect
a single process (i.e., attention to time), while still capturing
the differential effects on prospective and retrospective time
estimation.

Timing Phenomena

To demonstrate how our model unifies prospective
and retrospective timing, we will consider some target phe-
nomena. First, we introduce behavioral and neural phenom-
ena that have proven robust features of interval timing per-
formance, and which have also been successfully modelled
by other theoretical frameworks. Then we discuss some phe-
nomena that directly specify in which situations prospective
timing is affected, either by interruptions, cognitive/memory
load or inattention. Finally, we will discuss the effect of per-
ceived changes on retrospective timing. When compounding
these phenomena, we will demonstrate how prospective and
retrospective timing may originate from the common princi-
ples.

Timing variability increases over time

Time estimation is remarkably precise. Humans can
reliably recognize and reproduce intervals with little vari-
ability. Interestingly, however, this variability increases with
the target interval, such that the longer the interval to-be-
estimated, the larger the variability of those estimates. In
fact, many studies have reported that the standard deviation
of time estimates scales linearly with time (Lejeune & Wear-
den, 2006; Wearden & Lejeune, 2008), which is called the
scalar property (Gibbon, 1977) 1. Despite its central role
in the timing literature, some deviations have also been ob-
served. For instance, standard deviation has both been shown
to increase slower than linear (e.g., Lewis & Miall, 2009) and
faster than linear (e.g., Bizo et al., 2006), although it is not
clear under which circumstances these distinct violations of
the scalar property occur. As such, a major challenge is not
just to account for the scalar property, but also to explain why
that property may not always hold.

Timing behavior can be learned rapidly

The timing of behavior needs to be flexible. When
an interval lasts longer than expected, we need to learn to
be more patient in the future, so as to prevent premature re-
sponses. Conversely, when an interval ends before we ex-
pect it, we need to react more quickly the next time around,
in order to not miss out on a window of opportunity. Ev-
idence from humans and non-human animals suggests that
this learning can happen impressively quickly, in as little as
one or two exposures to a new target interval (Komura et al.,

2001; Mello et al., 2015; Simen et al., 2011a). For instance,
when humans need to respond as close to the end of an in-
terval (but not after it has ended), they can learn to respond
sooner (or later) when the target interval decreases (or in-
creases). This learning happens in as little as one or two
exposures to the new interval (Simen et al., 2011a). Few-
shot temporal learning clearly contrasts with slower forms of
learning (Bueti & Buonomano, 2014), and as such it repre-
sents an important benchmark for models of timing.

Complex neural patterns exhibit temporal scaling

Traditionally, it has been hypothesized that the neu-
ral mechanisms underlying timing resemble a simple accu-
mulation process. Even though this view has been questioned
on empirical and theoretical grounds (see e.g., Kononowicz
& Penney, 2016; Kononowicz et al., 2018; van Rijn et al.,
2011), it is still a prominent view in the literature (Salet
et al., 2022). However, recent studies have uncovered that
the neural mechanisms underlying timing might be fairly di-
verse. Researchers have not just found neurons that steadily
increase their firing during an interval (ramping cells; Em-
mons et al., 2017), but also neurons that decrease their firing
(decaying cells; Mita et al., 2009) or fire only at specific mo-
ments in time (time-cells; MacDonald et al., 2011). These
findings are difficult to align with theories that propose only
a single neural mechanism underlying timing performance.
Interestingly, this same set of diverse neurons also exhibits
temporal scaling: Their firing patterns compress when short
intervals are timed and stretch when long intervals are timed
(e.g., Emmons et al., 2017; Henke et al., 2021; Shimbo et
al., 2021; Wang et al., 2020; Wang et al., 2018; Zhou et al.,
2020). In other words, the speed at which their firing pattern
unfolds adapts to the target interval. Furthermore, the de-
gree of temporal scaling predicts trial-to-trial fluctuations in
time estimation (Wang et al., 2018), suggesting that temporal
scaling has an important functional role in timing. Despite
the established role of complex neural patterns and temporal
scaling in timing behavior, their underlying principles and
interconnections are not clear yet.

Interruptions induce delays in timed responses

In realistic contexts, timing may be interrupted, for
instance when receiving a call while waiting for the last 30
seconds before draining the pasta. These kinds of interrup-
tions are often studied with gap- and distractor paradigms
(Roberts & Church, 1978). Here, subjects are trained to re-
spond after a ‘timing’ signal (e.g., a tone) has been presented
for a certain amount of time. On some trials, a gap in the

1The scalar property also pertains to the scaling of the distribu-
tions of time estimates. However, in its simplest form, the linear
relationship between mean and standard deviation simplifies to We-
ber’s Law for time perception.
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timing signal or a salient distractor is presented. Subjects
sometimes either ignore the interruption, pause the timing
process until the end of the interruption, largely forget how
much time has passed before the interruption, or show behav-
ior that is somewhere in between those possibilities (Buhusi
& Meck, 2009a). The amount of ‘pausing’ or ‘forgetting’
depends on several factors, such as the timing of the interrup-
tion (Cabeza de Vaca et al., 1994), the dissimilarity between
the distractor and the timing signal (Buhusi, 2012), the length
of the target interval (Buhusi & Meck, 2009b), and the nov-
elty of the distractor (Buhusi & Matthews, 2014). Overall,
these findings suggest that memories of how much time has
passed may be forgotten when timing is interrupted. Never-
theless, it is not yet clear how or why this kind of forgetting
happens in the first place.

Working memory load decreases prospective time esti-
mates

The effect of interruptions on timed responses al-
ready suggests that timing somehow has limited capacity.
More specifically, it seems that timing limitations are related
to capacity limitations in working memory (Fortin & Schwe-
ickert, 2016). For instance, when performing an N-back task,
increasing the number of items that need to be concurrently
remembered (i.e., working memory load) does not only affect
working memory performance but also decreases prospective
time estimates (Polti et al., 2018). This kind of interference is
specific to working memory: Processing in working memory
interferes with timing, whereas visual search, task switching
and long-term memory activation do not (for a review, see
Fortin & Schweickert, 2016). A popular interpretation of this
effect is that working memory and timing share a common,
limited resource (Buhusi & Meck, 2009a). While this theo-
retical position is often voiced in the literature, it is not clear
how such a limited resource is implemented neurally.

Attending to time increases prospective time estimates

Time seems to drag on in boring situations, such as
watching a pot boil (Block et al., 1980; Cahoon & Edmonds,
1980). One common explanation posits that in boring situ-
ations we ‘attend to time’, which in turn increases prospec-
tive time estimates. This prompts the feeling that we have
been waiting for longer than is actually the case. The effects
of attention on time perception have also been confirmed in
more controlled settings. For instance, when more attention
is paid to the timing task in dual-task paradigms, subjective
estimates of the interval are longer (Casini & Macar, 1997;
Franssen & Vandierendonck, 2002; Macar et al., 1994). In-
terestingly, for durations up to a minute, self-reported atten-
tion to time increased time estimates over and above differ-
ences between prospective and retrospective timing instruc-
tions (Martinelli & Droit-Volet, 2022). This effect of divided

‘attention to time’ suggests that keeping track of time de-
mands attention. A related way in which attention increases
time estimates is selective attention, for instance when sub-
jects pay attention to a certain region in space. Stimuli in
the attended region are perceived to last longer than unat-
tended stimuli (e.g., Enns et al., 1999; Mattes & Ulrich,
1998; Seifried & Ulrich, 2011; Yeshurun & Marom, 2008).
In sum, the effect of attention on time estimation is twofold:
Divided attention to the timing task increases prospective es-
timates and selective attention to stimuli increases their per-
ceived duration. The concept of ‘attention’ features promi-
nently in theories of time perception. However, a major chal-
lenge for these theories is to implement attention in a neu-
rally plausible way.

Divided attention to time interferes with secondary tasks

Divided attention to the timing task and selective
attention to timed stimuli both increase prospective time es-
timates. However, an important reason to dissociate between
their effects on time estimation is that they have opposing
effects on stimulus processing. Selective attention both in-
creases prospective time estimates (e.g., Enns et al., 1999;
Mattes & Ulrich, 1998; Yeshurun & Marom, 2008) and en-
hances task performance for attended stimuli. Directing di-
vided attention to the timing task, however, impairs sec-
ondary task performance (for a review, see Brown, 2006).
For instance, when subjects are asked to give priority to
the timing task, performance on luminance detection tasks
(Casini & Macar, 1997; Macar et al., 1994), visual working
memory tasks (Franssen & Vandierendonck, 2002), Stroop
interference tasks (Zakay, 1998) deteriorate. It has been sug-
gested keeping track of time requires executive processes
(Brown, 2006) specifically those important for memory up-
dating (Ogden et al., 2011). In a classic fMRI study, par-
ticipants were instructed to divide their attention between a
timing task and a color working memory task. When partici-
pants attended more to the timing task, not only did their per-
formance on the color working memory task deteriorate, neu-
ral responses in brain areas responsible for color perception
(V4) were also attenuated (Coull et al., 2004). In contrast,
neural responses to selectively attended stimuli are typically
enhanced (Treue, 2001). In sum, if ‘attention’ is invoked to
explain variations in time estimation, divided and selective
attention need to be dissociated carefully.

Perceived changes increase retrospective estimates

As already suggested by William James, an inter-
val with varied and interesting experiences seems long as we
look back. Indeed, when more stimuli are perceived, ret-
rospective time estimates are longer (Block & Reed, 1978;
Fountas et al., 2022; Lositsky et al., 2016; Mcclain, 1983;
Predebon, 1996). Crucially, the number of perceived stim-
uli is a reliable predictor of retrospective estimates, but
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not the number of remembered stimuli (e.g., Block, 1974).
The number of perceived stimuli in an interval also length-
ens prospective estimates in some situations (Bangert et al.,
2019; Faber & Gennari, 2017; Herbst et al., 2012; Kladopou-
los et al., 2004; Poynter & Homa, 1983; Roseboom et al.,
2019; Waldum & Sahakyan, 2013), but in other situations
shortens prospective estimates (Bangert et al., 2020; Liv-
erence & Scholl, 2012; Mcclain, 1983; Poynter & Homa,
1983; Predebon, 1996). While the effect of the number of
stimuli seems consistent across prospective and retrospective
paradigms (Block & Zakay, 1997), their effects can be dis-
sociated experimentally. For instance, when stimuli are ac-
tively processed, increasing the number of stimuli decreases
prospective estimates, whereas passively viewed stimuli do
not have a consistent effect. At the same time, retrospec-
tive estimates increase with the number of stimuli regardless
of whether these stimuli are processed actively or passively
(Mcclain, 1983; Predebon, 1996). A recent study by Bangert
et al. (2020) demonstrates that task requirements determine
whether event boundaries lengthen or shorten prospective
duration estimates. When a naturalistic event boundary hap-
pened during a to-be-estimated interval, it shortened prospec-
tive estimates. However, temporal proximity between tones
was judged as more distant when an event boundary inter-
vened.

Another effect related to perceived changes clearly
dissociates prospective and retrospective timing. When a
series of items is explicitly segmented, effectively process-
ing more changes in perceptual input, retrospective time es-
timates increase (Poynter, 1983), whereas prospective esti-
mates are unaffected (Zakay et al., 1994; for a meta-analysis,
see Block et al., 2010). In a typical version of this paradigm,
participants encode a series of memory items and are in-
structed to remember some ‘high-priority’ items at all costs.
When these high-priority items are uniformly distributed
over the interval (effectively segmenting the input), retro-
spective estimates are significantly longer than when high-
priority items are clustered around the start or end of the
interval. Interestingly, segmentation does not affect the es-
timated number of events, suggesting that segmentation is
partly dissociable from the effect of the number of perceived
changes (Poynter, 1983). Overall these findings suggest that
actively processed changes, and in particular events that seg-
ment a stream of input, selectively shape retrospective but
not prospective time estimates.

Cognitive load affects prospective and retrospective esti-
mates differently

As referred to earlier, the seminal meta-analysis
by Block et al. (2010) on time estimation has found that
cognitive load decrease prospective estimates, while it in-
creases retrospective estimates. The effect of cognitive load
on prospective and retrospective estimates neatly combines

the effects we discussed above. As more attention is paid to
the difficult secondary task, less attention is paid to the tim-
ing task, decreasing prospective time estimates. Conversely,
as the primary task becomes more difficult, more changes are
stored in memory, increasing retrospective time estimates. In
sum, the differential effects of cognitive load on prospective
and retrospective time estimation may provide us with infor-
mation on how they differ. As we will see in the next sec-
tion, current state-of-the-art models that attempt to explain
this interaction suggest that cognitive load affects different
processes for prospective and retrospective time estimation –
attention and memory, respectively.

Models of Timing

Despite the central role of timing in everyday ac-
tivity, its underlying cognitive and neural processes remain
an active matter of debate (for a comprehensive review, see
Paton & Buonomano, 2018). A wide variety of models have
been proposed that show basic timing capabilities, suggest-
ing that many possible mechanisms could keep track of time.
Here we will introduce several classes of timing models and
discuss how they explain the timing phenomena introduced
earlier. We will then zoom in on two models that explain
the paradoxical effect of cognitive load on prospective and
retrospective time estimation.

Pacemaker-Accumulator Models

The earliest formal models of interval timing were
Pacemaker-Accumulator (PA) models (Creelman, 1962;
Treisman, 1963; for an extensive review of PA models, see
Simen et al., 2013; van Rijn, 2014). These models view
timing as the accumulation of ‘ticks’ that are emitted by
a pacemaker. The number of accumulated ticks represents
how much time has elapsed since the onset of a single timed
event, but also the expectancy of future rewards that follow
these events after a predictable interval (Gibbon et al., 1984;
Killeen & Fetterman, 1988; Simen et al., 2011a).

There are several ways in which PA-models explain
the scalar property, mainly varying in assumptions they make
about noise in the pacemaker (e.g., Simen et al., 2013), the
memory system that stores temporal information (Gibbon et
al., 1984) or in the rate of the pacemaker (Treisman, 1963;
Ulrich et al., 2022). Several versions of PA-models have
also been proposed that successfully account for violations
of the scalar property (e.g., Bizo et al., 2006; Namboodiri
et al., 2016). PA-models propose that a steady accumulation
of ‘ticks’ underlies time estimation, which makes it difficult
to account for complex neural patterns. However, some PA-
models (for an overview, see Simen et al., 2013; also see,
Almeida & Ledberg, 2010) propose that shorter or longer
intervals are learned by speeding up or slowing down accu-
mulation, which explains the temporal scaling of ramping
neurons (Komura et al., 2001). The effect of interruptions
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on time estimates can be successfully explained by assuming
that time estimation shares some attention and memory re-
sources. During the interrupting event, accumulation (partly)
stops and accumulated ‘ticks’ are gradually forgotten, ex-
plaining most of these ‘interruption’ effects fairly parsimo-
niously (Buhusi & Meck, 2009a). Similarly, this same set
of assumptions can explain the effect of working memory
load on time estimates: When working memory resources
are taken away from the timing task, prospective time esti-
mates decrease (Fortin & Schweickert, 2016). Conversely,
when attention is directed to the timing task, more ‘ticks’
can be accumulated, increasing prospective estimates (Za-
kay & Block, 1995). A similar explanation also holds for
the effect of attention on time estimates: More ticks are ac-
cumulated for attended stimuli. Alternatively, attention to
time entails that the current ‘tick count’ is monitored more
consistently. Conversely, when attention is taken away, the
count is inspected too late, delaying timed responses (Taat-
gen et al., 2007; van der Mijn & van Rijn, 2021)2. While the
effect of ‘attention to time’ on secondary task performance
is not often considered, it is compatible with time estimation
sharing a common resource with other cognitive processes
that underlie secondary task performance (Buhusi & Meck,
2009a). Lastly, PA-models are not ideally suited to explain
retrospective time estimation. If we assume a single internal
clock, the model would need a clear cue when to start and
stop accumulating, which is not available in ‘retrospective’
scenarios. In principle, PA-models could account for retro-
spective timing if each event started its own internal clock
from which elapsed time would be read out. However, it is
not clear whether this solution scales well given the number
of events that would need to be timed (and therefore clocks
that need to run in parallel) , and if it does, whether it would
account for empirical patterns in retrospective timing.

Memory Models

Memory models of timing are a more recent de-
velopment in the literature and were a clear reaction to the
more dominant PA-models (Staddon & Higa, 1999). In-
stead of proposing an accumulation process, memory mod-
els have generally implemented timing as keeping track of
the activity of memory traces (French et al., 2014; Grossberg
& Schmajuk, 1989; Killeen & Grondin, 2021; Shankar &
Howard, 2010, 2012; Staddon & Higa, 1999). These mod-
els assume that events create memory traces that decay over
time. Elapsed time since an event can be estimated from how
much activity is left in memory traces associated with that
event, similar to how radioactive decay can be used to date
fossils.

Memory models have been successful at explaining
both adherence to the scalar property (French et al., 2014;
Shankar & Howard, 2010, 2012) as well as violations of the
scalar property (Killeen & Grondin, 2021; Staddon & Higa,

1999). While all memory models specifically propose neu-
ral decay as central to timing performance, the TILT model
(Shankar & Howard, 2010) has also successfully predicted
the distribution of neural decay rates in entorihinal cortex
(Bright et al., 2020), time-cell activity (MacDonald et al.,
2011; Pastalkova et al., 2008), and proposed how these time-
cells might exhibit temporal scaling (Liu et al., 2019) as ob-
served in (Shimbo et al., 2021). The effect of interruptions
on timing can be captured by memory models quite naturally
since recent ‘timing’ input is gradually forgotten during the
interruption (Hopson, 1999). The effect of working memory
load has been successfully modelled by the Fading-Gaussian
Activation Model of Interval Timing (GAMIT; French et al.,
2014), which assumes time estimation competes for attention
with concurrent tasks in working memory. GAMIT can also
explain the effect of ‘attending to time’ in dual-task situa-
tions, however, it is not clear whether GAMIT also predicts
that time estimation degrades secondary task performance
(see section GAMIT). GAMIT does not explicitly address
the effect of the number of perceived stimuli on retrospective
time estimates. Conversely, the Predictive Processing model
(Fountas et al., 2022) has shown that the number of perceived
events can explain retrospective estimates for eventful scenes
(see section Predictive Processing Model). As we will see
later, both GAMIT and the Predictive Processing model can
explain the differential effects of cognitive load on prospec-
tive and retrospective time estimation by assuming that they
affect attention and memory processes, respectively.

Recurrent Neural Network Models

In recent years, Recurrent Neural Network (RNN)
models have gained prominence in the timing literature (e.g.,
Buonomano, 2000; Buonomano & Mauk, 1994; Egger et al.,
2020; Gavornik et al., 2009; Goudar & Buonomano, 2018;
Hardy & Buonomano, 2018; Hardy et al., 2018; Laje &
Buonomano, 2013; Pérez & Merchant, 2018; Remington et
al., 2018; Shea-Brown et al., 2006; Sohn et al., 2019; Wang
et al., 2018; Yamazaki & Tanaka, 2005). While the previ-
ously discussed model categories referred to specific mech-
anisms underlying timing behavior (i.e., accumulation, de-
cay, oscillation), RNN models only constrain the wiring dia-
gram of the neural network to have recurrent connections. As
such, several models that were previously discussed are tech-
nically RNNs. For instance, the ToPDDM model by Simen
et al. (2011a) formalize the implementation of their model
as neural network with specific recurrent connections, which
allows the model to implement a ‘neural clock’. Here, we
will mainly talk about RNN models that randomly initialize
their recurrent weights (which can be further refined through

2This cannot be the whole story, however. Dual-tasking has a
large effect on timed motor responses, such as production and re-
production, but also reliable effects on verbal estimates (see Block
et al., 2010)
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learning mechanisms). When these RNNs are given inputs,
complex neural firing patterns ensue from which elapsed
time can be read out. Consequently, RNN models demon-
strate that any stable, non-repeating trajectory through high-
dimensional neural state space can tell time. Indeed, this
view suggests that most (if not all) neural circuits have the
intrinsic ability to tell time, as opposed to models that assume
dedicated timing circuits (Ivry & Schlerf, 2008).

Several RNN models have systematically explored
how different sources of neural noise may explain the scalar
property and deviations of the scalar property (e.g., Laje &
Buonomano, 2013; Pérez & Merchant, 2018). In contrast
to PA-models and memory models, RNNs exhibit many dy-
namic neural patterns: ramping, decaying, oscillating, and
more complex patterns (see, e.g., Wang et al., 2018). A va-
riety of RNN models have been developed that exhibit tem-
poral scaling of these complex responses as well (Goudar
& Buonomano, 2018; Murray & Escola, 2017; Sohn et al.,
2019; Wang et al., 2018). RNN models have not aimed at ex-
plaining the effect of interruptions on timing. Interestingly,
some researchers have shown that RNNs that were trained to
robustly estimate time were insensitive to interruptions (Laje
& Buonomano, 2013), which suggests that forgetting may
not naturally emerge in these trained RNNs. While the com-
plex dynamics of RNN models resemble those that are found
during working memory tasks (Bi & Zhou, 2020; Cueva et
al., 2020), a systematic explanation of working memory load
effects on time estimation has not been explored. Similarly,
RNN models have not incorporated attentional mechanisms,
so the effects of selective and divided attention on time esti-
mation are currently not explained. Further, RNN models are
typically applied to prospective timing only, leaving open the
question of how they explain differences between prospective
and retrospective timing.

The flexibility of RNNs allows them to explain a
variety of psychological and neural phenomena, but this flex-
ibility may come at the cost of interpretability. Where pre-
vious models had a relatively straightforward interpretation
of how individual states represent time (e.g., time since on-
set, history of events), the temporal representations used by
RNNs are more elusive. RNNs are trained to perform a host
of different timing tasks, after which their behavior can be
studied by analysing the dynamics of the network as it per-
forms those tasks (Beiran et al., 2023; Bi & Zhou, 2020;
Sohn et al., 2019). However, there are little to no guarantees
that the network solves different timing tasks using the same
basic mechanisms. In this sense, RNN models generally lack
strong theoretical commitments to common representational
and computational principles underlying temporal process-
ing. In principle, RNN activity could provide the raw ma-
terials for decoding a more abstract representation of time
(van Wassenhove, 2009), which could conform to common
representational principles. However, that still leaves open

the question of whether the raw materials that RNNs gener-
ate operate according to common principles, or whether they
are merely an accidental by-product of its wiring diagram. In
sum, while RNN models have generated powerful explana-
tions for a host of neural data, their flexibility complicates a
systematic account of the representational and computational
principles underlying prospective and retrospective timing.
We will now zoom in on two models that have attempted
such a unification.

GAMIT

In the memory section, we already mentioned
the Fading-Gaussian Activation Model of Interval Timing
(GAMIT; French et al., 2014). Since it is one of the few for-
mal models that explain both prospective and retrospective
timing, we will explain it in more detail here. GAMIT as-
sumes that prospective and retrospective estimates are made
based on decaying neural activity. The model learns a map-
ping between memory trace activity and objective time: the
lower the activation, the more time has passed. GAMIT
further assumes that cognitive load affects the rate of de-
cay: when cognitive load is higher than usual, activation de-
cays more quickly, presumably because of interference from
distracting concurrent tasks (timing tasks themselves have a
special status, and do not affect the rate of decay). When
time estimates are made under high levels of cognitive load,
activity traces will have decayed more than under typical lev-
els of cognitive load, explaining why retrospective estimates
are longer under high cognitive load. The model further
proposes that only in prospective conditions, activity traces
are sampled by a separate attentional mechanism. This at-
tentional sampling mechanism produces an estimate of how
quickly the activity trace decays: if the difference between
consecutive activity samples is large, the rate of decay is es-
timated to be high. As a result, the model estimates that the
passage of time is relatively fast. GAMIT assumes that this
‘passage of time’ estimate adjusts activity-based estimates.
For instance, if the estimated rate of decay is faster than typ-
ical, activity-based estimates will be adjusted to be shorter,
since time seems to be passing more quickly.3 Crucially,
when attention is diverted away from timing, fewer samples
are collected, leading to larger differences between consec-
utive samples and therefore fast passage of time estimates.
Activity-based estimates are adjusted to be shorter, explain-
ing why prospective estimates decrease with high cognitive
load.

We believe that the hypothesized role of attention in
GAMIT may preclude a comprehensive explanation of some

3The assumed connection between prospective time estimates
and ‘passage of time’ estimates, however, is more complicated:
Passage of time judgements are often not systematically related to
prospective time estimates (Wearden, 2015).
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important effects. First, GAMIT models divided attention to
the timing task, but attentional sampling of the memory trace
does not affect the memory trace. Therefore, it is not clear
how more attention to time (i.e., more sampling) might cause
interference with secondary task performance (see Divided
attention to time interferes with secondary tasks), in partic-
ular tasks in which such a memory trace might be central to
performance, such as working memory tasks (e.g., Franssen
& Vandierendonck, 2002). Also, while attentional sampling
does not influence neural activity in GAMIT, attention to
time does seem to attenuate neural responses related to sec-
ondary task performance (Coull et al., 2004). While GAMIT
does not explicitly model the effects of selective attention to
stimuli on time perception, it seems that the magnitude of
neural responses would not play a role in such an explana-
tion, since attention is not assumed to influence the activity
trace. In contrast, a large body of evidence suggests that
larger neural responses engender longer perceived stimuli
(Matthews & Meck, 2016), and selective attention to stimuli
amplifies neural responses (Treue, 2001). In sum, GAMIT‘s
assumption that attention does not influence neural activity is
inconsistent with several timing phenomena that are related
to attention.

Predictive Processing Model

The most recent model attempting to explain the ef-
fect of cognitive load on prospective and retrospective time
estimation is the Predictive Processing model by Fountas et
al. (2022). The core principle of the Predictive Processing
model is that time estimates are based on counting the num-
ber of surprising events encoded in a sensory processing net-
work. This model captures idiosyncratic biases in prospec-
tive timing, where more eventful scenes were judged to last
longer than uneventful scenes (Fountas et al., 2022; see also
Roseboom et al., 2019; Sherman et al., 2022). The predictive
processing model assumes that sensory inputs are processed
by a hierarchical Bayesian network. The network continu-
ally updates an internal model of the world by generating
model-based predictions and comparing these predictions to
incoming information. When predictions are violated, the
network generates a prediction error. Crucially, when the
magnitude of the prediction error crosses a decaying thresh-
old, it is ‘surprising’ enough and the network encodes the
relevant information as an event in episodic memory after
which the decaying threshold is reset. Time estimates are
generated by reading out the number of surprises in the hier-
archical network. When less attention is paid to time in high-
load prospective conditions, the dynamic threshold decays
slower, resulting in fewer surprising events being encoded
in episodic memory and shorter time estimates. In con-
trast, effects of cognitive load in retrospective conditions are
explained by memory retrieval processes, specifically how
much effort is put in retrieving events from episodic mem-

ory after the interval has ended.4 The model assumes that in
high-load conditions, more effort is put into retrieving events
after the interval is over, leading to more retrieved events and
therefore longer time estimates.

The Predictive Processing model assumes that as
more attention is paid to time, the attention threshold decays
faster, leading to more surprising events and longer time esti-
mates. However, by equating time estimates with the number
of surprising events, the model may be unable to account for
some effects of attention on time estimation. First, while its
attentional mechanism can amplify sensory signals, it fails
to capture how divided attention to time interferes with sec-
ondary task performance. For instance, when attention is di-
rected at time, more events are encoded in episodic memory,
but the model does not clarify how more remembered events
could lead to worse task performance in secondary tasks, es-
pecially working memory tasks (e.g., Franssen & Vandieren-
donck, 2002; Macar et al., 1994) or luminance detection
tasks (Casini & Macar, 1997; Macar et al., 1994). Second,
surprising events do not always lead to longer temporal per-
cepts. Several studies have shown that stimuli shown at cued
locations are perceived as longer, even though stimuli at cued
locations were more probable and therefore less surprising
than stimuli at uncued locations (Enns et al., 1999; Mattes
& Ulrich, 1998; Yeshurun & Marom, 2008). Further, as
mentioned earlier, the number of stimuli increases prospec-
tive estimates, but mainly when stimuli are not actively pro-
cessed. Instead, when stimuli are actively processed, more
stimuli decrease prospective estimates (Mcclain, 1983; Pre-
debon, 1996). It is also not clear how the Predictive Pro-
cessing model would account for the effect of interruptions
(see Interruptions induce delays in timed responses). When
a salient distractor (i.e., a ‘change’ in the timed signal) is
introduced in timing tasks, timed responses are delayed in
proportion to the dissimilarity to the timed signal (for a re-
view, see Buhusi & Meck, 2009a). In contrast, the Predictive
Processing model would predict that more salient changes
would lead to faster timed responses, given that more subjec-
tive time is accumulated. Additionally, when the distractor is
not familiarised (i.e., more surprising), timed responses are
delayed even more (Buhusi & Matthews, 2014). In sum, by
equating ‘surprising events’ to subjective time, the predictive
processing model overlooks phenomena in which surprises
compress subjective time (for a similar critique of this type
of explanation, see Phillips, 2012).

The Unified Temporal Coding Model

In this paper, we develop a neurocomputational
model of prospective and retrospective timing: the Unified
Temporal Coding (UTC) model. The UTC model puts for-

4But it is unclear why cognitive load would not affect the encod-
ing of episodes into memory.
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ward unifying representational and computational principles
underlying prospective and retrospective timing. Here we
will provide a conceptual sketch of those principles and how
they can account for the timing phenomena we introduced
earlier.

At the core of the UTC model is the Legendre Delay
Network (LDN; Voelker & Eliasmith, 2018), which is struc-
tured to optimally approximate a rolling window of its input
history. This neural network maintains and continuously up-
dates a representation of the recent past. To illustrate how
this works, consider a sequence of inputs (Figure 2). Our
network represents, at any point in time, not only the current
input but also its history up to a certain point in the past: it
represents a rolling window of input history. Incoming inputs
are encoded into the front of the window and past inputs are
gradually pushed to the end of the window until they eventu-
ally fall outside of it.

It should be stressed that the UTC model does
not just process a sequence of stimuli with a certain time-
constant (i.e., the one set by the window). In addition to
going through a sequence of stimulus representations, it also
represents a sequence of stimuli. That is, at any point in
time, the network does not only represent the current input
(or a few hundered milliseconds ago, accounting for physi-
cal and physiological delays); it represents on a continuous
timeline what happened when. This timeline spans the inter-
val between the current timepoint (‘now’) to some point in
the past, defined by the window’s size. Crucially, stimulus
information within the window is not simply an echo of its
initial presentation, and its temporal location inside the win-
dow does not depend on its ‘strength’. Instead, information
continually slides across the window, and as such temporal
information is actively constructed, instead of passively re-
ceding into the past.

As we will see later, the way that our network
actively represents a rolling window explains the variety
of complex neural firing patterns underlying timing perfor-
mance. Further, when the network only needs to remember
events that happened very recently, it can shrink the size of
the temporal window on-the-fly. This ensures that more re-
cent events are represented with higher fidelity (i.e., smaller
error), but at the cost of more distant events that fall out-
side of the smaller window. Our network accomplishes this
by speeding up the dynamics, which explains why complex
neural patterns may exhibit temporal scaling (see Changes
in window size explain temporal scaling in complex neural
patterns).

The UTC model also details how the length of the
rolling window can be learned rapidly. A on-shot learning
rule (adapted from TDDMs Rivest & Bengio, 2011; Simen
et al., 2011a) details how the window needs to be lengthened
when the target interval is longer than the window, and short-
ened when the target interval is shorter than the window. In

effect, the UTC model can learn to match the window size
to the target interval. These learning mechanisms ensure that
all relevant stimulus information during the interval can fit
inside the window. Whenever the window shrinks, this en-
sures that the information still inside the window is repre-
sented at higher fidelity. As we will show later, this learning
mechanism matches empirical learning rates from behavioral
data, and is consistent with rapid adaptation of neural ramp-
ing speed (Komura et al., 2001).

The UTC model assumes that retrospective time es-
timates are made by summing the overall fidelity of the re-
membered inputs that are represented inside the temporal
window. When more inputs are summed, retrospective time
estimates become longer. Similarly, when those same in-
puts have higher fidelity, retrospective time estimates also
increase. This mechanism provides an explanation of why
more perceived stimuli increase retrospective time estimates
(see Integrating remembered content explains effects of con-
textual changes).

Prospective estimates of stimulus duration are made
in the same way as retrospective estimates. Since the network
continuously updates input history, the longer a stimulus is
presented, the longer the representation of that stimulus in
the rolling window. Then, if the network integrates this rep-
resentation within the rolling window, it gives an accurate
estimate of stimulus duration. However, when the stimulus
input is interrupted in some way, the representation of stimu-
lus history contains a ‘gap’, resulting in lower time estimates,
effectively delaying timed responses. We will show later that
the UTC model explains how the timing of the gap, the sim-
ilarity of the interrupting distractor and the to-be-estimated
interval determine delays in temporal responses (see Forget-
ting of timing information accounts for the effect of interrup-
tions).

In some situations, we need to prospectively time an
‘empty’ interval with little to no external stimuli. In this case,
we assume that the network receives an internally generated,
constant ‘timing’ input. Crucially, this timing input is repre-
sented in the same way as stimulus inputs. As such, there is
no difference between prospective and retrospective timing
apart from the fact that this input is used to estimate time.
Using a constant ‘timing’ input ensures that time estimates
are largely independent of fluctuations or gaps in the stream
of stimulus inputs. As we will show later, the more inputs are
presented to the network, the more both timing and stimulus
inputs will be distorted. We will demonstrate that this pat-
tern of interference is similar to interference found in work-
ing memory, which explains why higher working memory
load (i.e., more stimulus inputs) interferes with timing per-
formance. Interestingly, this same mechanism also explains
why performing a timing task degrades secondary task per-
formance: The ‘timing’ input interferes with the represen-
tation of stimulus inputs as well (see Neural normalization
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Figure 1
Retrospective and Prospective time estimation in the UTC model

Note. Left panel: The UTC network receives a series of stimuli and remembers both their content and their temporal position inside a
temporal window. Incoming stimuli are encoded at the right of the temporal window. Recent stimuli are continually pushed to the left until
they fall outside of the window and are forgotten by the network. The network can control the size of the temporal window based on task
demands. Longer windows ensure that longer temporal patterns can be tracked, but at the cost of lower fidelity. Short windows can only
track temporal patterns over a brief timescale, but the fidelity of the content is higher. Time estimates are made by adding up how much
content the network remembers in the temporal window and mapping that to a unit of time. Right panel: When the UTC model
prospectively estimates an interval, it receives an additional constant ‘timing’ input (see clock in the Figure). This ‘timing’ input is
represented in the same way as the stimulus inputs. The UTC model estimates time by adding up how much of this ‘timing’ input it
remembers.

explains effects of working memory load).
Unlike previous models, the UTC model only in-

corporates an attentional mechanism with respect to stimulus
input. When more selective attention is paid to stimuli, the
input is multiplied by an attentional gain factor, consistent
with neurophysiological effects of attention (Treue, 2001).
As we will see later, this explains why attended stimuli are
perceived as longer than unattended ones: Attentional gain
increases the vividness of the stimulus input, resulting in
longer estimates (see Attentional gain explains effects of se-
lective and divided attention on time estimation). Crucially,
to model divided attention, the UTC model assumes that
when more attention is paid to timing, less attention is paid
to stimulus inputs. Because these stimulus inputs are par-
tially ‘ignored’ they have less opportunity to interfere with
the timing input. This both explains why attending to time

increases prospective time estimates (less interference), but
also why paying more attention to time interferes with sec-
ondary task performance (stimulus inputs are less attended;
see Attentional gain explains effects of selective and divided
attention on time estimation).

The effects of cognitive load on time perception
tend to suggest that prospective and retrospective timing are
different kinds of processes. The UTC model, however, sug-
gests a different view. In cognitively demanding tasks, more
divided attention needs to be paid to incoming stimuli. These
incoming stimuli compete with the timing input, effectively
decreasing prospective time estimates. In contrast, when
stimuli are attended more in retrospective timing, they lead
to more change being encoded in the temporal window, in-
creasing retrospective time estimates. The only difference
between prospective and retrospective timing is the ‘timing’
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input to the network. But precisely because stimulus and
timing information is processed in the same way, can we ac-
count for the interaction effect of cognitive load with a single
parameter: The attention paid to stimuli.

Methods

In this section, we will detail the representational
and computational principles behind the UTC model. First,
we describe the Legendre Delay Network (LDN; Voelker et
al., 2019), which a memory network that tracks ‘what’ hap-
pened ‘when’ over a rolling window. We will describe how
complex information is represented by the network as high-
dimensional vectors (referred to as Semantic Pointers; Elia-
smith, 2013). In the appendix, we also demonstrate how to
implement the LDN as a spiking neural network. Finally, we
will give a brief overview of the full network architecture of
the UTC model.

Legendre Delay Network

How do we represent ‘what happened when’ up to
some arbitrary point in the past? Consider the case where we
want to remember the luminance of some light source, from
the current moment up to one second ago. One could, in
principle, store each new input on the first slot of a memory
register, while moving already stored inputs along. The input
at the end of the memory register is dropped (after exactly
two seconds). At each point in time, the memory register
perfectly represents a temporal window of ‘what happened
when’ that spans the current moment up to some point in the
past.

There are some obvious problems with this ap-
proach, but the most salient one is memory capacity. If we
want to perfectly store the history of an input that evolves
through continuous time, we would need infinite memory ca-
pacity. A more scalable solution is to approximate the input’s
history. Given limited resources, the optimal way to repre-
sent the input history up to some point in the past is with
the Legendre Polynomials (Voelker, 2019). Similarly to how
a signal in the frequency domain can be approximated by a
finite combination of sines and cosines, a signal in the time-
domain can be approximated by the Legendre polynomials.
This representation in the time-domain is optimal in the sense
that it minimizes the RMSE between the representation and
the history of the input up to some point in the past.

The Legendre Polynomials can be considered a
‘temporal basis function’, from which one can construct a
representation of input history. In our model, we will use
a shifted version of the Legendre Polynomials (A) that is
defined over the interval between 0 (‘now’) and θ, where θ
is the length of the temporal window (i.e., up to when in-
puts need to be remembered). We will denote the number of
polynomials that are used (i.e., the order of the approxima-
tion) as d. Each polynomial adds something unique to the

representation in the temporal window. The first dimension
represents the mean of the signal, the second one represents
the slope, the third one the quadratic component, and so on.
We simply need to determine how much ‘weight’ we should
give each polynomial and add them up to form a representa-
tion of the input history. We will denote these ‘weights’ as
the d-dimensional vector x: each value in x corresponds to a
weight for its associated Legendre polynomial.

Given this optimal method of representing the input
history, let us consider how to construct such a representation
on-the-fly, that is, specify the algorithm that can be used to
generate such a representation. Put differently, at each mo-
ment in time, we want to know how to encode new inputs (u)
while maintaining and updating our current representation of
input history (x). We want our system to represent the his-
tory of its input u(t) using a d-dimensional state-vector x(t),
where each of the d coefficients applies to a different dimen-
sion of our temporal basis function (the Legendre Polynomi-
als). Since we have defined our challenge in continuous time,
the most natural way of viewing our system is as a dynamical
system:

θẋ(t) = Ax(t) + Bu(t) (1)

where θ is the length of the window, x(t) is a d-
dimensional state vector and ẋ(t) is the temporal derivative of
x(t). The input matrix (B) defines how new inputs should be
encoded and the dynamics matrix (A) defines how to main-
tain our current representation of input history (for a detailed
derivation, see Voelker (2019)). We can think of the input
matrix as mapping the new moment in time into the Legen-
dre polynomial space, in such a way that it is combined with
the previous representation of the input history without dis-
torting that history. At the same time, the dynamics matrix
maps the current history to the next moment in time, while
‘dropping’ the oldest point in the memory, since that oldest
moment is now longer than θ seconds ago. Performing these
mappings over and over means that old information is con-
stantly dropped and new information is constantly added so
that, at any moment the vector x(t) contains exactly θ seconds
of historical information.

Note that we have included θ as a variable in the
dynamical system that can be adjusted on-the-fly. If we want
the system to only remember the last 10 instead of 20 sec-
onds, we may decrease θ, leading to faster encoding and
forgetting of information. As changing θ does not influence
the dimensionality (i.e., the ‘storage space’ stays the same),
the incoming information can be stored with higher fidelity
when θ is reduced. This demonstrates the inherent balance in
the system, it can either store information over longer time-
frames with lower fidelity, or use the available resources to
capture the input at high fidelity over shorter time frames.
To illustrate how this system works, Figure 2 shows how the
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network represents the last θ seconds of its input history 5.
The shifted Legendre polynomials are timescale-

invariant because they are defined over 0 < θ′

θ
< 1, where

θ′ is a time point within the temporal window. Therefore, for
any θ, the underlying temporal basis functions will be exactly
the same, scaled by θ. To illustrate, given a scaled input, the
state-space representation at θ′ = 10ms for θ = 100ms is
exactly the same as the state-space representation at θ′ = 10
seconds for θ = 100 seconds. In sum, the underlying repre-
sentation of time is the same, regardless of the timescale that
we are dealing with. This suggests that the algorithm will
apply well across many timescales.

In the appendix (Appendix B), we describe how the
algorithm can be implemented as a recurrent neural network
in a detailed, biologically plausible neural framework.

Semantic Pointers

To this point, we have described how to implement
an algorithm that can represent a rolling window of a 1-
dimensional signal (e.g., a network that only tracks the lu-
minance of a single source of light). However, the repre-
sentations that are the part and parcel of cognition are more
complex. How do we move from a 1-dimensional represen-
tation to the representation of the letter ‘A’ on a screen or a
complex tone that signals future rewards? A possible solu-
tion to this problem is assuming that these symbol-like enti-
ties are represented as high-dimensional vectors that we call
‘semantic pointers’ (Eliasmith, 2013). Semantic pointers are
compressed neural representations that provide a consistent
representational protocol for supporting a wide variety of bi-
ological behaviours, including perception, action, decision-
making, and symbolic cognition. Semantic pointers, along
with the architecture they are a part of, have been used to
build the world’s largest functional brain model, Spaun (Elia-
smith et al., 2012). This architecture is implemented with
the NEF, as it naturally extends to high-dimensional vector
representations. In the UTC model, we use the methods of
semantic pointers to capture different concepts being repre-
sented at different points in time.

The Legendre Delay Network described in the pre-
vious section also naturally extends to representing a rolling
window of vectors, which can, for instance, be semantic
pointers. Instead of presenting a 1-dimensional signal to an
LDN, we can present a D-dimensional semantic pointer to
D networks that each encode a rolling window of a single
dimension of the semantic pointer.6 Therefore, the collective
D × d state matrix X represents a rolling window of the his-
tory of semantic pointers. To decode the original semantic
pointers, we first decode the history of each component of
the semantic pointers by multiplying the state vector with the
Legendre polynomials (S Phistory = XPT ). Then, we compute
the column-wise dot-product between the resulting D× t ma-
trix (S Phistory) and the originally presented semantic pointers

(Figure 3).
Semantic pointers allow for complex information

processing, from action selection to abstract reasoning (Elia-
smith et al., 2012). In our current model, however, we only
use semantic pointers to simulate how stimuli are represented
in typical cognitive and timing tasks. Nevertheless, this high-
dimensional vector representation is a core explanatory prin-
ciple in the UTC model. As we will see later, by assum-
ing that both ‘timing’ information and ‘stimulus’ informa-
tion are represented by semantic pointers, the UTC model
accounts for phenomena where these types of information in-
teract (e.g., stimulus-distractor similarity effects in gap pro-
cedures, working memory load effects on prospective timing,
and the effect of selective and divided attention on prospec-
tive and retrospective timing).

The UTC Model - Network Architecture

The sections above describe the mechanisms rele-
vant to the implementation of the UTC model, to which we
will now turn. The basic premise of the UTC model is that
both stimulus and timing information are represented, en-
coded and read out in the exact same way. That is, both types
of information are represented as semantic pointers, encoded
by the LDN, and read out by integrating the representations
in the temporal window of the LDN. The only difference is
that stimulus inputs are waxing and waning, whereas the tim-
ing input is assumed to be relatively constant. Crucially, we
propose that this is also the only difference between prospec-
tive and retrospective timing. Only when the timing task is
known beforehand (prospective timing) can we have a con-
stant timing input, otherwise the network can only recon-
struct a temporal estimate based on stimulus information.
The network architecture is presented in Figure 4, alongside
its fixed and free parameters in Table 1, and activity traces for
a typical trial in a dual-tasking timing experiment in Figure
5.

The inputs to the network are D-dimensional (64-
dimensional in these simulations) vectors and come from two
external sources: stimulus information (s) and temporal in-
formation (t). Stimulus information encodes external stimuli
that are encoded for the task at hand (Figure 5). Temporal
information feeds a constant, step-like input to the network,
with its onset matched to the to-be-timed interval (Figure 5).
In some experimental paradigms, this interval is filled (i.e.,
the stimulus stays on the screen for the duration of the in-
terval), while in others the interval is empty (i.e., onset and

5A more intuitive way to understand the LDN is to see it oper-
ate in real-time (see this video-version of Figure 2 https://youtu.be/

2jNp6Sf_Vsc)
6Our implementation of separate LDNs representing a single di-

mension of the Semantic Pointer is just one possible implementa-
tion. Alternatively, a single recurrent neural network could have
neurons sensitive to certain directions in the D × d space.

https://youtu.be/2jNp6Sf_Vsc
https://youtu.be/2jNp6Sf_Vsc
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Figure 2
The LDN can solve the delay challenge

Note. The input u (top row) is fed to the system, which continually updates the state vector x containing coefficients (second row) on the
temporal basis functions (the Legendre Polynomials; third row). At any point in time, the network has an instantaneous representation of
the last θ seconds (here 2s) of its input history. For instance, when we take the coefficients in x at 3s (dots in the second row), multiply them
with the Legendre polynomials p and take their sum, we end up with a fair representation of the input history between 0 (‘now’) and θ
seconds ago.
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Figure 3
Network example with Semantic Pointers

·SP 

Note. The input (top row) is a series of D-dimensional vectors, Semantic Pointers. We plot the dot product between the input state and the
ideal vectors. The network (d = 6)continually updates the state vector X containing coefficients (second row) on the temporal basis
functions for each of the separate components of the input vector. At any point in time, the network has an instantaneous representation of
the last θ seconds (here 2s) of its input history. When we take the coefficients in x at 3s (dots in the second row) and decode the history of
each input component (S Phistory = XPT ; third row), we can compute the dot product with the set of original vectors to decode the history of
original Semantic Pointers.

offset are defined by brief stimuli, with nothing in between).
A consistent finding in the literature is that ‘filled’ durations
are perceived as longer than ‘empty’ durations (Wearden &
Ogden, 2021). For simplicity, we assume that in both scenar-
ios, the network is fed a constant input, whether it is defined
by a filled stimulus or whether it is self-sustained activity.
This self-sustained activity can be readily implemented in the

NEF (see for instance, Bekolay, Laubach, et al., 2014).

While our network clearly separates stimulus and
temporal information into separate input channels, this is
only done for clarity. Both sources of information are
summed together in the next step, meaning that not their
source but their content determines how they drive behav-
ior. This assumption is in stark contrast to PA-models, which
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Table 1
Network architecture parameters

name description value

inputs D Dimensionality of semantic pointers. 64
gs Attentional gain on stimulus input s Varies between conditions and experiments (default = 1)

X θ Window length. Matched to relevant timescale
θ−1 Speed of integration and forgetting. Inverse of θ
d Dimensionality of LDN. Controls precision of represented history. Fixed within experiments. Varies between (sets of) experiments.
N Number of neurons per LDN dimension 200 (unless otherwise indicated)
max rate Maximum firing rates of neurons in LDN. Matched to maximum firing rates in modelled neural data
τθ−1 Synaptic time-constant for θ−1 → X 0.005
τrecurrent Synaptic time-constant for X→ X 0.1

Figure 4
Network Architecture of the UTC model

xinput

t

s

B′

A′

X

gs

θ-1

θ-1

Note. The network receives two external inputs: a temporal vector
t, and a stimulus vector s. The stimulus vector is multiplied by an
attentional gain factor (gs). The input vectors are added in the
neural population xinput. Each dimension of xinput is fed into a
separate LDN, collectively referred to as the neural population X.
The input matrix B′ encodes inputs into the window represented by
X, and A′ pushes past inputs towards the end of the window until
they are eventually forgotten. The length of the temporal window
(θ) is adapted by controlling the rate of encoding and forgetting
(θ−1), which is a result of simply multiplying the input matrix B′
and recurrent matrix A′ by θ−1.

assume that, regardless of stimulus content, timing behav-
ior is driven by the reading of an accumulated ‘clock’ read-
ing. While specific kinds of stimulus content may trigger
the onset of accumulation, stimulus content plays no role in
subsequent timing processes. The UTC model, on the other
hand, proposes that timing behavior critically depends on an
integrated representation of exactly the stimulus content it is
supposed to track.

The neural population xinput combines t and s by
adding the two vectors together. Temporal information (t)
is always a constant, unit-length input, ensuring stable tim-
ing behavior. However, we assume that the model can con-
trol how much it attends to stimulus inputs (s) by multiply-
ing that vector by an attentional gain factor (gs)7. When gs

is high, stimulus information will be better decodable from

xinput (Figure 5). This attentional gain factor gs, as we will
see later, captures the effects of selective attention on time
perception, models the effects of divided attention by con-
trolling the degree of mutual interference between temporal
(t) and stimulus information (s), and explains differential ef-
fects of cognitive load on prospective and retrospective tim-
ing.

The D-dimensional vector in xinput is fed to D
LDNs, collectively denoted as X. In effect, X is a D-by-
d matrix, containing the coefficients on our temporal basis
function for each dimension of the D-dimensional input vec-
tor xinput. To encode the new information into the temporal
window, each input dimension is multiplied by B′ and by θ−1,
which controls how quickly new information is encoded into
the window on-the-fly. Information already inside the tem-
poral window, represented by X, is gradually pushed outside
of the window through multiplication with the recurrent ma-
trix, defined by A′. Again, the speed at which information is
pushed outside of the window (i.e., forgotten) depends on
window size (θ) and is controlled by setting θ−1. In sec-
tion , we propose a one-shot learning rule that can learn to
match the window size to the appropriate timescale of the
task. Given the speed and accuracy of this learning rule,
and to simplify our modeling, we simply fitted θ to match
the correct timescale of the timing task. For instance, when
a 10-second interval needs to be produced, θ was set to 10
seconds.

At each moment in time, the LDNs (X) represent
a rolling window of its input (xinput). This representation
would allow for complex judgements about temporal pat-
terns, however, in this paper we are only concerned with one-
dimensional judgements about single intervals (e.g., ‘how
long did the task last?’, or ‘press this button after 2 seconds’).
We propose that these one-dimensional time estimates (ts)
are made by integrating the absolute represented value for

7Note that, in the UTC model, attentional and recurrent gain are
different. Recurrent gain (θ−1) multiplies the recurrent and input
matrices of the LDN network. As a result, it scales the window
size. Attentional gain, on the other hand, only multiplies the stimu-
lus vector. As a result it increases the decodability of the stimuli.
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Figure 5
Activity traces during dual-task timing

3

2

1

0

gst s

xinput

X

Note. On the left, the temporal information (t), on the right, stimulus information (s). First row: input to the memory population (wmi).
Second row: temporal (left) and stimulus information represented in xinput. When gs is increased (darker colors), meaning that more
attention is paid to incoming stimuli, stimulus information is represented more clearly and interferes with the temporal information. Third
row: example traces from the LDN populations that are sensitive to either temporal or stimulus information. Bottom: ‘internal time’, the
decoded temporal window at treal=1s. Final row: the network represents the last second of its inputs. The network simultaneously
represents temporal (left) and stimulus information (right; first presented stimulus in blue). For higher values of gs, the stimulus
information is represented better to the detriment of temporal information.

each semantic pointer over the entire window and summing
up those integrated values for all semantic pointers that are
represented in the window:

ts =

N∑
i=1

∫ 0

−θ

|X(t)PT · SPi|dt (2)

where · is the dot product, X is the d × D matrix of coeffi-
cients represented by the network at time t, P are the Legen-
dre Polynomials, SPi is the ith semantic pointer in the vocab-
ulary (i.e., the set of possible semantic pointers that we feed
into the network) and N is the number of semantic pointers in
the vocabulary (see Figure 3). Here, the difference between
prospective and retrospective estimates is that prospective es-
timates are only based on the ‘temporal’ semantic pointer (t),
while retrospective estimates are based on semantic pointers
presented by the stimulus input (s).

All code and simulation data are available on https:
//github.com/dejongejoost/UTC_model.

Results

In order to prospectively produce an interval, we
present the network with a constant input that is integrated
until it reaches a fixed threshold at which time it produces a
response. Different intervals are produced by adjusting the
window size to match the desired interval. The desired in-
terval is provided in the experimental instructions. The win-
dow size, θ, is adjusted by controlling the recurrent gain θ−1,
which corresponds to controlling the speed at which the in-
put is integrated. Increasing the recurrent gain will result in
a shorter temporal window and will therefore produce a re-
sponse after a shorter interval, while decreasing the recurrent
gain will result in a longer temporal window and produce
a response after a longer interval (Figure 6). Our approach
is highly similar to some pacemaker-accumulator models, in
particular TDDMs (Simen et al., 2013), where the speed of
integration (i.e., drift-rate) is adjusted to produce different
intervals. Further, when we implement a first-order LDN,
this network represents the mean of the temporal window,
corresponding to a leaky integrator with a time constant that
equals window size (θ).

In contrast to producing an interval, the exact

https://github.com/dejongejoost/UTC_model
https://github.com/dejongejoost/UTC_model
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Figure 6
Prospectively producing and perceiving an interval of one second

Note. (A) When the network produces time intervals, the network integrates a constant input until a threshold (dotted line) is reached, upon
which a motor response is made. If the speed of integration is faster (slower), the produced interval (tp) will be shorter (longer). (B) When
the network perceives an interval, a constant input is integrated until the end of the interval (dotted line). The state of the network at the end
of the interval serves as a measure of time. If the speed of integration is faster (slower), the perceived interval (ts) is longer (shorter).

timescale for integrating inputs is not known in perceptual
timing tasks, since the target interval is not known at stimu-
lus onset. Therefore, adjusting the recurrent gain of the net-
work on a trial-to-trial basis alone is not an effective timing
strategy. Nevertheless, it is evident that subjects are sensi-
tive to the distribution of intervals that have to be timed in a
given context (e.g., de Jong et al., 2021; for reviews, see Shi
et al., 2013; van Rijn, 2016). In the current model, adapt-
ing window size based on the estimated mean of the distri-
bution would improve performance compared to using the
same window size for each temporal context. For instance,
when an interval of 1 second has to be estimated, the network
will not be able to tell time if the window size is 0.1 seconds:
the state will have evolved to its maximum value too soon
and any differences between intervals thereafter are lost. In
contrast, a temporal window of 10 seconds will also render
differences in the state around the target duration too small,
since the state evolves too slowly. There is some neurophys-
iological evidence to support the claim that the speed of neu-
ral dynamics during the perception of an interval is adapted
to the expected range of intervals. For instance, when a short
(long) interval is expected, neural trajectories in dorsome-
dial prefrontal cortex (DMPFC) move faster (slower) (Sohn
et al., 2019). Some evidence suggests that these speed adjust-
ments may happen on a trial-to-trial basis; when a previous
interval is short (long), neural dynamics move faster (slower)
(Damsma, Schlichting, & van Rijn, 2021).

To account for time perception, we assume that the
window size remains constant for different target intervals
and is normally distributed around the target interval. On
each trial, we present the network with a constant input that

is terminated after the target interval has elapsed (Figure 6).
It is clear that for a fixed window size, the neural state will
represent different values for different target intervals. In Fig-
ure 6, a 1-second interval is repeatedly estimated, and the
recurrent gain varies normally around 1.

Different sources of noise account for different forms of
Timing Variability

The scalar property of time (Gibbon, 1977), i.e.,
the linear scaling of the standard deviation of time estimates
with its mean, has long been assumed to be a lawful prop-
erty of timing. The most straightforward way of testing the
scalar property is assessing whether the coefficient of vari-
ation (CV; σ

µ
) of time estimates is constant over a range of

different target intervals. Despite much evidence suggesting
that the scalar property generally holds (Lejeune & Wearden,
2006; Wearden & Lejeune, 2008), several theoretically inter-
esting exceptions have emerged. For instance, in a set of ex-
periments with target intervals ranging from 68 milliseconds
to 16.7 minutes, Lewis and Miall (2009) found a consistently
decreasing CV. In contrast, other researchers have found that
the CV first decreases, and then increases for longer intervals
(e.g., Bangert et al., 2011; Bizo et al., 2006; Getty, 1975;
Gibbon et al., 1997; Grondin, 2014; Matthews & Grondin,
2012).

Explaining different forms of scalar variability
prompted us to look at different sources of noise in our net-
work. PA-models of timing have demonstrated that, depend-
ing on which component is affected by noise, this may either
reproduce the scalar property, show a decreasing coefficient
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of variation, or an increasing coefficient of variation (for an
extensive review, see Simen et al., 2013). The brain is a noisy
system, so it is likely that many components in our network
(e.g., input, window size, individual neurons) will be affected
by noise to some degree, both within a single trial and be-
tween trials. The UTC model does not make strong assump-
tions about different sources of noise, since these may vary
between subjects, tasks and even over the course of learning.
Nevertheless, we will analyse two sources of noise that are
theoretically most relevant in our network: within-trial noise
in the input and between-trial noise in recurrent gain. Within-
trial noise is central to recent explanations of the scalar prop-
erty in PA-models (Simen et al., 2013). More specifically, a
constant CV is produced when within-trial noise in diffusion
is scaled by the square root of the drift rate (which is a result
of balancing excitatory and inhibitory inputs to the accumu-
lator). However, some of these PA-models also assume that
pacemaker speed is adjusted on a trial-to-trial basis (Simen
et al., 2011a), which is corroborated by neurophysiological
evidence (Wang et al., 2020). Surprisingly, this trial-to-trial
variability does not feature explicitly in their explanation of
the scalar property.

In order to examine the role of noise in interval pro-
duction and perception, we take the mathematical implemen-
tation of our network and perturb the input and recurrent gain
(θ−1) with noise. Within individual trials, the constant input
to the network is normally distributed. That is, the input is
0 before the start of the interval and N(µ = 1, σ = σinput)
for the duration of the interval, such that on each timestep
of the simulation a random sample is taken from this normal
distribution. We consider a scenario in which σinput is con-
stant, and a scenario in which σinput scales with

√
θ. On a

between-trial level, a value drawn from a Normal distribu-
tion, N(µ = 0, σ = σrecurrent gain), is added as a constant to
θ−1 throughout each trial.

For producing intervals, we follow the rationale de-
scribed above: different intervals are produced by adjusting
the mean recurrent gain. We simulated 250 trials per target
interval for different levels of within-trial noise in the input
and between-trial variability in the recurrent gain. Our find-
ings suggest that different sources of noise will produce dif-
ferent forms of scalar variability (Figure 7). In particular,
we found a constant CV when σinput scaled by

√
θ. That is,

the UTC model can explain adherence to the scalar prop-
erty by assuming that noise in the input somehow scales
with

√
θ. When σinput is constant, we observe a decreas-

ing coefficient of variation across different levels of noise,
clearly violating the scalar property. These observed pat-
terns are in line with findings of decreasing CVs over time
(e.g., Damsma, Schlichting, van Rijn, & Roseboom, 2021;
Lewis & Miall, 2009). When between-trial noise in recurrent
gain is added (while assuming σinput = m

√
θ), CV increases

over the tested range of intervals. These findings may there-

fore explain some violations of the scalar property where the
CV increases for longer target intervals (e.g., Bangert et al.,
2011; Bizo et al., 2006; Getty, 1975; Gibbon et al., 1997;
Grondin, 2014; Matthews & Grondin, 2012). In sum, input
noise and between-trial recurrent gain variability can account
for decreases and increases in CV, respectively.

While a constant CV is a clear sign of timescale in-
variance, there are more demonstrations. For example, the
entire distribution of timing behavior often scales with the
target time (for a review, see Wearden & Lejeune, 2008).
This ‘superimposition’ property of timing behavior is most
readily assessed by plotting responses on a relative timescale
by dividing the response times by their mean (in the case
of temporal (re)production). If timescale invariance holds,
these distributions should overlap perfectly. Here, we model
an experiment by (Simen et al., 2016) who found overlapping
normalized response time distributions for a range of target
times (2.2s, 5.1s and 11.3s). When we simulate response
times (N=1.000 per duration) from the UTC model under
the assumption that σinput = 2

√
θ, we found good superim-

position of relative response times, with an overall CV of 0.2,
matching behavioral data well (see Figure 8). This suggests
that the UTC can approximate true timescale invariance. It
should be noted, however, that other models have closed-
form solutions that guarantee timescale invariance (e.g., TD-
DMs, TILT, etc.), and as such they have an edge over models
that only approximate it.

For perceiving time intervals, we follow the ratio-
nale outlined above. The mean window size is manually
matched to the target interval, assuming that the target in-
terval does not vary much from trial to trial. In effect, this
modelling setup resembles classic psychophysical timing ex-
periments, where the criterion interval only varies between
blocks, not within blocks (Getty, 1975). This procedure en-
sures that the effects of the distribution of intervals within
a block are minimized, resulting in a cleaner estimation of
scalar variability. As we have seen before (Figure 6), the
network representation at the end of the interval depends on
window size. In other words, the network represents the du-
ration of the interval relative to window size. Therefore, in
order to generate a response that is only based on the per-
ceived interval, we multiply the value represented by the net-
work by the mean window size (θ) and the inverse of the
fixed threshold ( 1

threshold ) to obtain the estimated interval (ts).
This correction effectively rescales the ‘relative’ time in the
window back to ‘objective’ time. For time perception, we
obtain similar results to time production (Figure 9). When
the only source of noise is in the input, the CV decreases,
while trial-to-trial variability in the recurrent gain causes an
increasing CV.
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Figure 7
Coefficient of variation (CV) for time production under different assumptions about within- and between-trial noise

Note. Coefficient of variation is plotted across a range of produced target intervals. In the left panel, the within-trial noise in the input signal
(σinput) is assumed to scale with

√
θ, with m determining the overall level of noise. This scaling produces approximately flat CV over mean

produced interval, with m scaling the overall level of noise. In the middle panel, σinput is assumed to be constant (m), which produces a
decreasing CV. In the right panel, σinput is assumed to scale with 2

√
θ, but between-trial noise in the recurrent gain (σgain) is varied. This

produces an increasing CV over the target interval.

Figure 8
Superimposing normalized response time distributions.

Note. To demonstrate true timescale-invariance in the UTC model, we model the time production experiment by Simen et al. (2016). The
model produces intervals of 2.2, 5.1 or 11.3 seconds. Here, we assume that σinput scales with 2

√
θ, which produces a CV of around 0.2. In

the left panel, the response time density functions center around the target interval and becomes progressively wider with target interval. In
the right panel, response times are normalized by θ. The overlap between normalized response time distributions suggests
timescale-invariance.

One-shot learning of window size explains rapid tempo-
ral learning

Humans and non-human animals can quickly adapt
the timing of their behavior to changing temporal contingen-
cies. Accurate timing of new target intervals can be accom-
plished in as little as one or two trials (Komura et al., 2001;
Mello et al., 2015; Simen et al., 2011a). These findings
put a lower bound on the learning rate that a model should
exhibit. This is especially important for the UTC model,
which assumes that, in order to accurately produce or per-

ceive an interval, the window size (θ) is matched to the tar-
get interval. How can window size be learned so rapidly?
We have taken inspiration from one-shot learning rules de-
veloped by TDDM models, which can adapt neural ramping
speed to new intervals after a single exposure. We adapted
these learning rules to the UTC, so that θ can be learned.

The learning rules consist of an ‘early-timer rule’
and a ‘late-timer rule’. Consider the scenario where the
model needs to respond as close as possible to a target in-
terval (but not after it has already ended). When the UTC
model responds too early, it should increase θ, so that on the
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Figure 9
Coefficient of variation (CV) for time perception under different assumptions about within- and between-trial noise

Note. Coefficient of variation is plotted across a range of perceived target intervals. Similar results to time production are obtained for
different assumptions about noise.

next trial, it will respond later. The ‘early-timer rule’ em-
ployed by TDDMs specify how the rate of neural integration
(which is akin to θ−1 in the UTC model) should be decreased
in real-time, starting from the response until the end of the
interval. It turns out that this learning rule can be applied
to the UTC with little modification to explain rapid learning
of longer θ (see Figure 10). From the moment the model
responds until the end of the interval, the recurrent gain is
decreased θ−1 at a rate of (θ−1)2. The ‘late-timer rule’ details
how θ should be decreased when the model responds too late.
When the model responds too late, θ needs to be decreased by
the relative distance that still needs to be traversed by x until
the threshold. Again, this decrease in θ can be implemented
through the ‘late-timer rule’ employed by TDDMs, without
much modification (although it should be noted that the ac-
curacy of the ‘late-timer rule’ depends on d). In effect, the
recurrent gain (θ−1) needs to be increased by θ−1 ∗ threshold−x

x .
Intuitively, when x is at the threshold exactly when the inter-
val ends, there is no update. If x is only halfway there, the
θ−1 should be doubled. The two learning rules work in con-
cert to rapidly adapt θ to accurately produce intervals (see
trial-by-trial Figure 11). In turn, learning the window size in
UTC mirrors adaptive ‘temporal scaling’ of neural responses
to target intervals, which we discuss next.

Changes in window size explain temporal scaling in com-
plex neural patterns

As discussed earlier, the neural firing patterns dur-
ing timing performance are diverse (e.g., ramping, decay-
ing, time-cell activity). Further, these same complex re-
sponses compress and stretch as shorter and longer intervals
are timed, respectively. How does our network explain both
of these features? First, instead of having a single node that
represents a dimension in the network, each spiking neuron
in our recurrent network encodes a particular combination
of dimensions (see Appendix B. For instance, a single neu-
ron may be sensitive to positive values of the first dimension
(meaning an increase in firing rate when the mean of the sig-

nal in the temporal window becomes more positive), while at
the same time being sensitive to negative values of the second
dimension (meaning a decrease in firing rate when the slope
of the signal in the temporal window becomes more nega-
tive). This heterogeneity of tuning in our spiking neurons
systematically captures heterogeneity observed in electro-
physiological experiments. A separate population of neurons
controls the window size, where individual neurons may en-
code increases or decreases in window size, therefore speed-
ing up or slowing down neural dynamics. In this section, we
demonstrate that the network can jointly capture behavioral
and neural data from a temporal production task (Wang et al.,
2018) and a perceptual timing task (Gouvêa et al., 2015).

Temporal Production (Wang et al., 2018). In
this section, we model a study by Wang et al. (2018) who
found that during a temporal production task neural firing
patterns in several brain areas are highly heterogeneous and
whose activity exhibited temporal scaling. Wang et al. (2018)
recorded single-cell activity from multiple brain areas that
are believed to be crucial for temporal production: the me-
dial frontal cortex (MFC), caudate (striatum) and thalamic
neurons that projected to MFC. In this task, monkeys were
presented with a colored cue at the start of each trial, indicat-
ing whether they had to produce an interval of 800ms (red)
or 1500ms (blue). Then, after some delay, a ‘Set’ stimu-
lus was presented, marking the onset of the target interval.
Monkeys were required to produce a motor response after
the cued interval had passed and were rewarded if their pro-
duced interval was close enough to the target. Wang and col-
leagues found that neural firing patterns during the interval
were highly heterogeneous, containing neurons with ramp-
ing, decaying, oscillating and more complex temporal pro-
files.

The authors systematically assessed several classic
model alternatives, such as oscillatory models, ramping ac-
tivity with a flexible threshold, flexible ramping speed or
both a flexible threshold and speed, however, these models
were unable to capture the heterogeneity of the observed neu-
ral responses. In contrast, the best-fitting model was one in
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Figure 10
Early- and late timing rules employed by the UTC model

Note. In the top panel, the UTC model produces an interval of approximately 2s on trial n, while the actual target interval is 5s. The early
timing rule decreases θ−1 continually from the moment of responding (when x crosses the threshold) until the target interval ends. On trial
n+1, the window size (θ) more closely matches the target interval of 5 seconds (i.e., θ−1 ≈ 1

5 ). In the bottom panel, the UTC model has not
reached the response threshold yet when the 2s interval is already over on trial n. The late timer rule increases θ−1, so that on trial n+1, the
window size (θ) more closely matches the target interval of 2 seconds (i.e., θ−1 ≈ 1

2 ).

which the firing patterns were fit with a single polynomial for
each neuron that stretched or compressed along the time-axis
depending on the length of the produced interval. The degree
of scaling on individual trials was highly predictive of be-
havior. Interestingly, neural responses in thalamus exhibited
significantly less temporal scaling than MFC or caudate. In-
stead, a major portion of the variance in thalamic activity was
explained by a component where activity remained constant
throughout the interval, but the mean activity scaled with the
produced interval. These findings imply that the thalamus
may be involved in controlling the speed of neural dynamics
in brain areas MFC and caudate. Wang and colleagues were

able to model this division of labour with a recurrent neural
network, where the recurrent units received a constant input
throughout the interval that scaled with the desired interval.
This constant input, which is thought to reflect thalamic in-
put to MFC, effectively controlled the speed of the neural
dynamics, which in turn allowed the network to produce the
desired intervals.

The UTC model resembles the speed-control mech-
anism uncovered by Wang et al. (2018). We modelled their
experiment by setting up the spiking implementation of the
LDN (d=3, N=600). As described before, we assumed that
the network receives a constant input throughout the pro-
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Figure 11
One-shot learning rules allow the UTC model to rapidly learn new target intervals

Note. We initialize the UTC model to produce 10s intervals by setting θ = 10. Then, the target interval (dashed line) changes to 2s and the
model rapidly adapts to this shorter target interval through the late timer rule. After several trials, the target interval increases to 5s. The
early timer rule allows the model to rapidly adapt θ to match this new target interval.

duced interval. The interval is terminated when the read-
out of the network reaches a certain threshold. This allowed
us to produce target intervals (T) of 0.8s or 1.5s by setting
the temporal window to those values. In other words, we
adjusted the speed ( 1

θ
) to produce different intervals. In the

UTC network architecture, this is achieved by jointly multi-
plying the input and recurrent activity by 1

θ
so as to control

the rate of encoding and forgetting, respectively. The speed
was normally distributed across trials N(µ = 1

θ
, σ = 0.1).

This naturally produced more variable response times for the
longer intervals (σ0.8 = 64ms, σ1.5 = 164ms), mirroring
behavioral results from Wang et al. (2018).

We simulated the model 50 trials for each target in-
terval. In Figure 12, we show the firing patterns of several
representative neurons, which are highly heterogeneous, sim-
ilar to those found by Wang et al. (2018). This heterogene-
ity is due to individual neurons being sensitive to different
combinations of the underlying state vector x. We performed
no hand-tuning of neurons to generate these responses. In-
stead, we randomly chose combinations of dimensions over
the unit hypersphere, which allows each point in the state
vector to be equally likely to be represented by the neurons
(see Appendix B). As a result, some neurons exhibit upward
ramping, since they are mainly sensitive to positive changes
in the first dimension. Other neurons have ‘bell-shaped’ fir-
ing patterns, since they are predominantly sensitive to nega-
tive values in the second dimension. Further, when the trials
are binned according to response time, the neural firing pat-
terns exhibit scaling along the time axis: firing patterns are
‘stretched’ for longer intervals and ‘compressed’ for shorter

ones. In sum, adjusting window size accounts for both be-
havior and the temporal scaling of heterogeneous response
profiles in MFC and caudate.

The connection between the polynomials used by
Wang et al. (2018) and the Legendre polynomials in our net-
work is readily made. In particular, the Legendre basis is
a polynomial basis; one which is optimal for minimizing
representational error. The main difference is that the UTC
model provides a process account of how a polynomial basis
is continuously updated to represent time, instead of fitting a
polynomial basis to observed neural data. One consequence
of this is that our mechanistic account of heterogeneity sug-
gests a general way to model neural timing data, which can
in turn inform the optimal dimensionality of our network for
a given task. Future work should quantify how well the UTC
model can account for the heterogeneity of neural patterns
observed in timing tasks, from simple ramping neurons to
complex oscillatory responses.

Time Perception (Gouvêa et al., 2015). In this
section, we model an experiment by Gouvêa et al. (2015),
who found that the speed of neural dynamics in the dor-
sal striatum explained sensory interval timing on a trial-to-
trial basis. Rats were trained to perform a duration catego-
rization task: they had to judge whether auditory intervals
were longer or shorter than the mean interval of 1.5 sec-
onds. The dorsal striatum was found to be crucial for timing
performance, since performance dropped significantly when
it was pharmacologically inactivated. Individual neurons in
the striatum were sensitive to different intervals: during the
presentation of the longest interval, some neurons decreased
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Figure 12
The UTC captures heterogeneity and temporal scaling of neural responses as observed in Wang et al. (2018)

Wang et al. (2018)

UTC Model

Note. The UTC model qualitatively fits the heterogeneity found in MFC neural responses, with ramping neurons, decaying neurons,
oscillating neurons, and neurons with activity bumps. Further, these responses scaled along the temporal axis according to the produced
interval, where red hues represent short intervals and blue hues represent long intervals. Adapted from Wang et al. (2018)
https://creativecommons.org/licenses/by/4.0/.

their firing rates over time, some had peak firing rates some-
where in the middle of the interval, while others increased
their firing rates over time. Crucially, Gouvêa et al. (2015)
found that the speed at which the neural firing rates changed
predicted behavior. A Principal Component Analysis (PCA)
revealed a sub-space that explained most of the variance,
containing a ramping and a bell-shaped component. When
the neural state evolved slower through this space, rats were
more likely to classify the interval as short (i.e., as if less
time had passed), and when the neural state evolved quicker,

rats responded ‘long’ more often (i.e., as if more time had
passed).

We modelled the experiment by Gouvêa et al.
(2015) with the spiking implementation of the LDN (d=3,
N=600). We presented the network with a constant input
for the duration of the sample interval. We assumed that the
mean window size matched the maximum of the presented
sample intervals, which was 2.4 seconds. This ensures that
the network represents an overall accurate representation of
elapsed time accross sample intervals. We generate behav-

https://creativecommons.org/licenses/by/4.0/
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ioral responses according to this readout at the end of the in-
terval: if it was lower than 0.7 (which we set to match behav-
ioral data), the model response was ‘shorter’, else the model
responded ‘longer’. Across trials, we assumed that the recur-
rent gain was distributed according to a normal distribution
N(µ = 11.5, σ = 0.15), qualitatively recreating the vari-
ability in ‘neural speed’ found in the empirical data. First,
we found that the model was able to perform the task well,
resembling the performance of the rats (Figure 14). Then,
we visualize the normalized neural activity for the longest
interval in a heatmap (Figure 15), where neurons are sorted
according to their peak times. Individual neurons peaked
during the start, middle and end of the interval, providing
a fair match to the firing patterns in dorsal striatum found
by Gouvêa et al. (2015). This time-cell activity by the LDN
was first shown by Voelker and Eliasmith (2018) and is simi-
lar to time-cell activity found in hippocampus (Eichenbaum,
2014), entorhinal cortex (e.g., Heys & Dombeck, 2018), pre-
frontal cortex (e.g., Tiganj et al., 2017) and striatum (e.g.,
Mello et al., 2015).

Figure 13
Modelling interval categorization in Gouvêa et al. (2015)

Note. On the y-axis, the first dimension of the LDN network, on
the x-axis the time since interval onset. The decision boundary
determines whether the interval is categorized as shorter (if lower
than the decision boundary), or longer (if higher than the decision
boundary).

Finally, following the analysis in Gouvêa et al.
(2015), we performed a PCA on the simulated neural data
for the 1.62s interval. In line with previous interval timing
studies, the first component was a ‘ramping’ component and
the second component was ‘bell-shaped’ (e.g., Emmons et
al., 2017; Wang et al., 2018). Importantly, when the data was
split on response, we observed that ‘short’ responses were
associated with a slower trajectory through this PCA space,
whereas ‘long’ responses were characterized by a faster tra-
jectory. In other words, when the ‘neural clock’ moved
faster, the UTC model estimated that more time had passed,

similarly to the rats in Gouvêa et al. (2015). These results
suggest that variability in ‘neural speed’ in our neural net-
work is sufficient to qualitatively account for both behavioral
and neural data in a time perception task.

Figure 14
Behavioral performance on the interval categorization task

Note. On the y-axis, probability of long responses, on the x-axis
the interval duration. Logistic regressions were fit to the data.

Forgetting of timing information accounts for the effect
of interruptions

A prominent reason why the ‘internal clock’
metaphor is so appealing is that subjects seem to be able
to start, stop, and reset their internal clock. This ability is
most obvious from procedures where the timed signal is in-
terrupted by gaps or distractors (for a review, see Buhusi &
Meck, 2009a). In peak-interval procedures, subjects learn
to respond when the timing signal (e.g., a light or a sound)
has been on for a certain amount of time. When a gap or
distractor is inserted into the timed signal, three patterns of
behavior can be predicted from the perspective of an internal
clock (Roberts & Church, 1978). First, subjects may not de-
lay responding, as if ‘running’ their clock throughout the in-
terrupting event. Second, subjects may delay their response
by the duration of the interrupting event, as if they stopped
or paused their internal clock and resumed timing after the
event. Third, subjects may delay their response by the sum
of the pre-event interval and the duration of the interrupting
event, as if completely resetting accumulated time. However,
these three patterns of behavior are not discrete possibilities
but seem to exist on a run-stop-reset continuum (Buhusi &
Meck, 2009a). When properties of the interrupting event are
parametrically varied, such as the onset, duration or similar-
ity to the timed signal, the delay in responding also varies
continuously (Buhusi et al., 2006). This has prompted the-
oretical accounts to consider a more continuous mechanism
that includes running, stopping and resetting behavior as spe-
cial cases. A natural candidate for such a mechanism is mem-
ory decay (Cabeza de Vaca et al., 1994). Indeed, ‘run’ pat-
terns can be observed when decay is much less than the rate
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Figure 15
The UTC model captures neural dynamics of rodents performing a time perception task (Gouvêa et al., 2015)

Gouvea et al. (2015) UTC Model

Note. Individual neurons are plotted on the y-axis, time is represented on the x-axis, and color represents normalized firing rate. Individual
neurons are sorted according to when their firing rate peaks. Neurons that fire early in the interval are plotted in the lower parts and neurons
that fire later are plotted in the upper part.

Figure 16
Principal Component Analysis on simulated neural data for the 1.62 (middle) interval

Note. The first principal component (PC1; x-axis) shows a ramping profile over time, whereas the second principal component (PC2;
y-axis) shows a bell-shaped profile. Neural data was split between ‘short’ and ‘long’ responses and their neural trajectories were projected
onto the common PCs. The dots (red for ‘short’, blue for ‘long’) are evenly spaced time points between interval onset and offset. Connected
dots represent the same intermediate time point. The trajectory moves faster for ‘long’ estimates (red) than for ‘short’ estimates (blue).
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of ongoing accumulation, ‘stop’ patterns may be observed
when decay and accumulation cancel out perfectly and ‘re-
set’ patterns may be observed when decay is much larger
than accumulation (Buhusi & Meck, 2009a).

The UTC model has a natural connection to previ-
ous models that assume a decay of accumulated time during
interrupting events. We model gap and distractor procedures
with 2-dimensional LDNs (which provided the best fit to all
modelled datasets). The speed parameter (θ−1) in our net-
work controls how quickly information is accumulated, but
also how quickly it decays. In order to model how the stimu-
lus content of the timed signal and the distractors control tim-
ing, we provide the network with a unit vector t that serves
as the timed input. In order to read out the timing signal, we
compute the similarity (i.e., dot product) between the vector
t and the state of the network X. This ensures similar be-
havior to integrating a one-dimensional step input. When a
gap or distractor is introduced we assume that the similarity
between the timed signal and the distractor can vary between
approximately 0 and 1. For gaps, we assume that the gap has
a similarity of 0 to the timed signal. That is, from the start
to the end of the gap, the network receives no input (i.e., a
vector that consists of zeroes) . When a distractor, which is
also a D-dimensional vector, occurs, we provide it as an in-
put to the network instead of the timing vector t. Therefore, a
distractor that is highly similar to the timed signal only has a
small influence on accumulation and decay, since the driving
input is highly similar to the timed signal (similarity close to
1). In contrast, a highly dissimilar distractor will have a large
influence on accumulation and decay, since the driving input
is highly dissimilar from the timed input (similarity close to
0).

For the fit to Buhusi (2012) we needed to make
some assumptions about how sound intensity is presented as
a vector. First, we assumed a power-law representation of
stimulus intensity (Stevens, 1956) where the exponent was
taken from an empirical study on sound intensity discrim-
ination in rats (Pardo-Vazquez et al., 2019) and one scal-
ing parameter (k) that we fitted for each experiment. This
scaling parameter may capture differences in experimental
setup that influence the magnitude of distractor effects 8. We
then converted stimulus space to a vector representation that
can effectively deal with continuous quantities (Komer et al.,
2019). For a more detailed description, see Appendix ??.

Timing with Gaps

A natural consequence of forgetting mechanisms
during the gap is that the timing of gaps has a large influ-
ence on timing behavior. These effects were systematically
investigated by Cabeza de Vaca et al. (1994), who found that
depending on the duration, onset, and offset of the gap, tim-
ing behavior varied between stopping and resetting. When
we parametrically vary the duration, onset and offset of the

gap in our model simulations, the delays are on a continuum
between stopping and resetting, and provide a good quanti-
tative fit to the empirical data (Figure 17, see Experiment 2
in Cabeza de Vaca et al. (1994)). When the onset or offset
is fixed, but the duration is varied, we can see that as the
duration of the gap increases, the accumulated time decays
more, and the behavior tends to resemble a full reset. When
only the location of gaps is varied, we can see that for later
gaps, the accumulated time decays more strongly, since the
accumulated time is larger at gap onset, resulting in a linear
increase in peak shift.

Timing with Distractors

A similar explanation can be given for the effect
of distractors on timing. The similarity of the distractor to
the timed signal controls the magnitude of the delay in re-
sponding, such that distractors that are highly dissimilar to
the timed signal produce large delays in responding (Buhusi,
2012). In Experiment 1 of Buhusi (2012), rats were trained
to respond after a visual stimulus has been on for 30 seconds,
while a 40 dB auditory stimulus was continuously presented
in the background. This way, rats learned that the visual
stimulus in addition to the auditory background noise was
the signal to be timed. Then, distractors were introduced by
increasing the loudness of the background noise after 20 sec-
onds. Distractors that were similar to the 40 dB background
noise (e.g., 55 dB) only had relatively small effects on behav-
ior. However, as the distractor intensity increased (i.e., the
similarity between the distractor and the signal decreased),
the delay in responding also increased (Figure 18). Was this
delay in responding only due to the absolute intensity of the
distractor or did the similarity to the timed signal determine
behavior? In Experiment 2, the ‘similarity hypothesis’ was
tested more directly. Rats performed the same peak-interval
task, but now the timed signal was a visual signal alongside a
70 dB white noise signal. In the inter-trial-intervals, a 40 dB
white noise background was presented. Crucially, distractors
could either be more or less loud than the 70 dB timed sig-
nal. Rats delayed their responses according to the similarity
between the distractor and the 70 dB signal, regardless of
whether distractors were more or less loud (Figure 18).

Buhusi (2012) fitted a resource-allocation model to
the data. This model assumes that processing of the distractor
and keeping track of time tap into the same limited pool of
working memory resources. When more resources are spent
for distractor processing, there are fewer resources left for
timing. More specifically, Buhusi (2012) which assumed
that the rate of was proportional to the similarity between
the background noise and the distractor, obtaining a good fit
in both experiments. The UTC model makes assumptions

8In the case of Buhusi (2012), the intensity of background noise
in the inter-trial-interval varied, and may account for differences in
the free scaling parameter k



NEUROCOMPUTATIONAL MODEL OF TIMING 27

Figure 17
Timing with gaps (Cabeza de Vaca et al., 1994): activity traces (left) and fit to empirical data (right)

Note. Left: when the activity trace crosses the threshold (dashed line), we expect the peak in responding. The grey line represents baseline
peak-interval trials without a gap. Right: when duration (top and bottom) and location (middle) are increased, the responses are
increasingly delayed. The dotted line represents peak shifts expected for a ‘stopping’ pattern, dot-dashed line represents expected peak
shifts for a ‘reset’ pattern.

similar to the resource-allocation account (see ?? for details)
and obtains a reasonable quantitative fit to the data for both
experiments (Figure 18).

The UTC model makes similar assumptions com-
pared to the resource-allocation model by Buhusi (2012)
about the relationship between distractor similarity and rate
of decay. However, the UTC model proposes a different
underlying mechanism. The resource-allocation model as-

sumes that a limited resource is shared between working
memory for time and working memory for other cognitive
processes, implying that these working memory stores are,
at least to some degree, functionally encapsulated (Buhusi
& Meck, 2009a). In contrast, the UTC model assumes that
both temporal and stimulus information is represented by the
same neural population. Therefore, any effect of distractor
similarity is not due to allocating resources to separate work-
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Figure 18
Timing with distractors, fit to Buhusi (2012) experiment 1 (left; 40dB signal) and experiment 2 (right; 70 dB signal)

Note. As distractor similarity decreases peak times increase.

ing memory stores, but rather due to resource competition
within a single working memory store.

One may argue that the effects of distractor simi-
larity follow naturally from our account of vector represen-
tations within a single neural population, while a resource-
allocation account would have to make additional assump-
tions about the role of distractor similarity. Unfortunately,
behavioral data alone can not arbitrate between these theo-
retical possibilities. A more informative test may come from
neural recordings. For instance, the UTC model strongly pre-
dicts that individual neurons (e.g., in the prefrontal cortex)
are sensitive to both the timed signal and the distractor. Fur-
ther, measures of ‘neural similarity’ in sensory areas should
directly map onto the ‘rate of neural decay’ during distractor
presentation. These hypotheses remain to be tested empiri-
cally.

The interdependence of integration and decay

So far, the UTC model has been tested for scenarios
that have also been accounted for by existing models. Indeed,
Cabeza de Vaca et al. (1994) and Buhusi (2012) modeled
their results successfully with memory decay mechanisms
(Hopson, 1999, also see, ). A strong prediction of the UTC
model is that rate of integration and rate of decay are directly
related through θ. When the rate of integration is high, the
rate of decay is also high. Another crucial assumption of the
model is that different intervals are timed by adapting θ to the
appropriate timescale. Therefore, data from gap procedures
where the target interval is varied could easily falsify these
assumptions: Gaps should have a larger effect when shorter
intervals are timed.

This question was directly addressed in an experi-
ment by Buhusi and Meck (2009b). Rats were trained on

a tri-peak procedure, where three different response levers
were associated with 10, 30 and 90-second criteria. When
the timed signal was presented, rats learned to respond af-
ter 10 seconds for the first, after 30 seconds for the second
and after 90 seconds for the third lever. The authors observed
that response times did not correlate between different levers,
suggesting that different ‘internal clocks’ were running in-
dependently. Gaps of different durations (1, 3, 10 and 30
seconds) were introduced 15 seconds after stimulus onset.
Crucially, the delay in responding depended on the length of
the criterion. When the criterion was short (10 seconds), it
appeared as if rats already reset their clock for relatively short
gap durations. For longer criteria (30s and 90s), longer gaps
were required for a full reset. The UTC model provides a
good quantitative fit to the data, reproducing the finding that
gaps have larger effects for shorter target times (Figure 19).

Interestingly, Buhusi and Meck (2009b) fitted the
resource-allocation model to the data, using three internal
clocks that ran at the same speed but had different response
thresholds. To account for the findings, they made the addi-
tional assumption that each clock had separate resources that
were reallocated during the gap, where the salience of the
gap was proportional to the criterion time of each individual
clock. Note that none of these assumptions is ‘essential’ to
the resource-allocation model. Salience could be indepen-
dent of criterion time and the clocks could run at different
speeds without violating any of the core assumptions of the
resource-allocation model. In contrast, the validity of the
UTC model is highly constrained by the outcomes of this
experiment. If it turned out that the effect of the gap was
constant for different criteria (i.e., different speeds), at least
one of our core model assumptions would be completely mis-
taken.
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Figure 19
Model fit to Buhusi and Meck (2009b)

Note. Left panels depict activity traces for different gap durations and criteria. For the shortest criterion, the trace initially crosses the
threshold, but as the duration of the gap is increased, the activity decays relatively quickly. When the criterion is longer, short gaps have
less of an effect, since both integration and decay are slower. Right panels show the degree of resetting (as a percentage of a full reset) for
different gap durations (x-axis) and criteria (hues of blue). Gaps have larger effects on shorter criteria.

Additionally, the UTC model suggests an alterna-
tive interpretation of some pharmacological and neurologi-
cal effects on performance in gap procedures. For instance,
the effect of dopamine agonists (e.g., methamphetamine)
has been traditionally interpreted as independently increas-
ing internal clock speed and impeding working memory
(and therefore magnifying the effect of gaps). Conversely,
dopamine antagonists (e.g., haloperidol) tend to decrease
clock speed and attenuate the effect of gaps (Buhusi, 2003).

Our UTC model, on the other hand, suggests that, all else
being equal, any manipulation that increases the rate of in-
tegration will also increase the rate of decay. As a comple-
mentary example, lesions of the hippocampal system typi-
cally produce leftward shifts in responding in peak-interval
procedures and larger resets in gap procedures (for a review,
see Meck et al., 2013). Traditional accounts of these effects
suggest that hippocampal lesions independently affect clock
speed and working memory for temporal information (Meck
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et al., 1984). Conversely, the UTC model predicts that hor-
izontal shifts in timing functions - whether they are experi-
mentally induced or reflect accurate timing - are systemati-
cally related to working memory for time.

The UTC also suggests how to model other phe-
nomena in which ‘working memory for time’ plays a cen-
tral role. For instance, systematic over- and underestima-
tion have been found to depend on retention interval (Spetch
& Wilkie, 1983; Wearden & Ferrara, 1993; Wearden et al.,
2007; Wearden et al., 2002), order of sample and test stim-
ulus (Bausenhart et al., 2016). The additional dimensions
in the LDN network allow for maintenance of time intervals
relatively accurately for at least the the interval between stim-
ulus onset and the window size. By assuming that duration
is both processed and stored through the same principles, the
UTC model may be able to generate a constrained account of
‘working memory for time’. More generally, it has been pro-
posed that working memory for time taps into the same re-
sources as other working memory functions, a phenomenon
we turn to now.

Neural normalization explains effects of working mem-
ory load

Effects of interruptions already suggest that timing
performance taps into a limited resource. Indeed, the UTC
model assumes that both ‘timing’ and ‘stimulus’ information
are represented by a common neural population, which al-
lowed us to model the effects of distractors that were similar
to the ‘timing’ input. More specifically, the UTC model as-
sumes that both temporal and stimulus information are rep-
resented as vectors (see Figure 4 for the network architec-
ture). Temporal and stimulus inputs are combined in a cen-
tral input population (xinput) by adding the vectors together.
Crucially, adding the vectors results in interference: when
the temporal information is decoded from the network, the
added ‘noise’ from stimulus information will ensure imper-
fect decoding. As a consequence, temporal information is
integrated at a slower rate than would result from perfect de-
coding, explaining why prospective time estimates decrease
in dual-task conditions, similar to the previously discussed
gap and distractor paradigms.

An intuitive way to understand interference in the
UTC model is to consider making a shopping list. In princi-
ple, we could have a shopping list with one entry per item.
When we have many items, we just make a large list. How-
ever, if we only have limited resources (e.g., a small sheet
of paper), a trade-off presents itself. We could write down
some items, but once the next item does not fit on the list,
we stop writing. Unfortunately, we would lose the rest of the
items. Alternatively, we could write each item using smaller
letters, but at the cost of the legibility of each item. In the
case of our network, interference works like trying to write
multiple items (vectors) on a limited piece of paper (neural

population).
To illustrate how this interference works, consider

a network that represents the sum of two orthogonal 2-
dimensional vectors, s for stimulus and t for time (Figure 20).
In the mathematical implementation of this network, no in-
terference takes place: we can perfectly decode both s and t
from the network that represents their sum. Note however,
that s + t is not unit length: the vector is not normalized 9.
Crucially, when we implement vector addition with a spik-
ing neural network, a soft form of normalization takes place
due to neural saturation. The tuning curves of our spiking
neurons are such that firing rate is a decelerating function
of input (Figure 20 and Figure B2). Higher inputs will pro-
duce progressively smaller increments of firing rate. With
constant weights for decoding, a soft form of normalization
thus takes place (Figure 20): Vector s + t is almost reduced
to unit length 10. This, in turn, results in a loss of informa-
tion: the dot product between s and s + t is lower than one.
In other words, when both stimulus- and temporal informa-
tion are encoded in the same neural population, we lose some
information about both. In effect, the summed inputs to our
neural population share a common representational resource,
where the normalization of the resulting vector puts a capac-
ity limit on how well the original vectors can be decoded.
This normalization mechanism underlying capacity limita-
tions in working memory is similar to mechanisms used in
other neural models of working memory (e.g., Bays, 2014;
Bouchacourt & Buschman, 2019).

How is interference in our network related to the
capacity limitations typically found in working memory? A
consistent finding in the working memory literature is that
memory variability is a power function of set size (e.g., Bays
& Husain, 2008). To quantify how our network relates to this
power function of set size, we simultaneously presented N
orthogonal vectors to a spiking neural network, where N cor-
responds to the number of items in a typical working memory
task. We then decoded one of the original vectors and used
decoding accuracy (dot product) as a proxy for the memory
precision measures reported in the literature. Decoding per-
formance closely approximates a power function of set size,
suggesting that the kind of interference in our network cap-
tures typical set size effects in working memory (Figure 21).

To demonstrate that set size effects in our network
also capture interference between working memory and tim-
ing performance, we modelled an experiment by Polti et al.
(2018). Participants performed an N-back working memory
task, while also prospectively timing the duration of each

9Increasing the vector size each time a new vector is added is
similar to increasing the size of a shopping list with each new item,
for instance, by stacking sticky notes. The size (i.e., dimensionality)
of the shopping list increases without distortion of its items.

10Having a normalized vector despite adding more vectors is sim-
ilar to having a fixed-length shopping list
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Figure 20
Normalization in spiking neural networks

Note. Left panel: vector addition without normalization. When unit vectors s and t are added, the resulting vector is not unit length. Both
original vectors can be perfectly decoded from s + t. Middle panel: vector addition with normalization in a population of spiking neurons.
The resulting vector is almost unit length due to soft normalization by spiking neurons. Right panel: neural saturation drives normalization.
The tuning curve shows that firing rate is a decelerating function of input. Therefore, large values are compressed, leading to soft
normalization.

Figure 21
Working memory capacity limitations

Note. When more items are simultaneously presented to the
network, the decodability of the original vectors decreases
approximately as a power function.

block (30, 60 or 90 seconds). During each block, letters
were sequentially presented, and the start and end of the
block were marked by the presentation of red dots. After
each block, participants gave a verbal estimate of the interval
between the red dots. In some blocks, participants timed an
empty interval without any letters on the screen. In the rest of
the blocks, working memory load was parametrically manip-
ulated by requiring participants to either respond to a certain
letter (‘no load’) or respond when the letter N positions back

matched the letter currently on the screen. The authors found
that intervals were increasingly underestimated as working
memory load increased. Crucially, this effect scaled with the
timed interval, suggesting that the rate of temporal accumu-
lation was reduced by increasing working memory load.

We simulated the N-back experiment by assuming
that the model (d=6) is presented with a constant temporal
vector t and constant input that reflects, on average, items
stored in working memory over the course of a trial. In empty
interval conditions, we only presented t. In working memory
conditions, we simultaneously presented one vector for the
‘no load’ condition, and N + 1 vectors for the ‘N-back’ con-
ditions. As in the previous example, this produces interfer-
ence between items and can possibly account for decreases in
performance with increasing load. We only hand-tuned the
window size (θ = 180s), which was fixed across conditions,
and we increased the number of neurons in the recurrent neu-
ral network to 1000 neurons, which improved the reliability
of the time estimates. The UTC model captures both an in-
creasing underestimation of time with higher loads and its
dependence on the duration of the interval, providing a rea-
sonable fit to the empirical data (Figure 22). These results
suggest that the UTC model captures some important fea-
tures of timing, working memory, and their interdependence
in dual-tasking conditions.

Attentional gain explains effects of selective and divided
attention on time estimation

As discussed previously, attention has multifaceted
effects on time estimation. Selective attention to stimuli
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Figure 22
Model fit to Polti et al. (2018)

Note. Working memory load parametrically decreases subjective duration estimates, an effect that scales with the timed interval. The model
(black dots) captures both features of the empirical data.

increases the perceived duration of those stimuli (Enns et
al., 1999; Mattes & Ulrich, 1998; Yeshurun & Marom,
2008). Divided attention to time also increases time esti-
mates (Casini & Macar, 1997; Franssen & Vandierendonck,
2002; Macar et al., 1994), but interferes with secondary task
performance (for a review, see Brown, 2006). The UTC
model views attention as multiplying (i.e., lengthening) stim-
ulus vectors by some ‘attentional’ gain. In other words, when
stimuli are attended, the network lengthens those vectors so
that they can be decoded better. This mechanism accounts
for the effect of selective attention. As an example, spa-
tial selective attention improves stimulus processing of at-
tended stimuli. The UTC model proposes that selectively
attention works by multiplying stimulus vectors by an ‘at-
tentional gain’ factor (gs; see Figure 5). When stimuli need
to be ignored, gs < 1; when they need to be attended, gs > 1.
As a result, selectively attended stimuli have longer vectors,
which allows for better readout of stimulus information. At
the same time, this scaling of the length of the vector is pre-
served in the temporal window, resulting in longer time esti-
mates. In the UTC, the size of this attention effect scales with
the duration of the stimuli, as has been found in the literature
(Mattes & Ulrich, 1998).

Crucially, the interference between ‘timing’ and
‘stimulus’ inputs (see previous section) explains the effects
of divided attention. That is, when stimulus inputs are at-

tended, they have longer vectors and gain a competitive ad-
vantage over the ‘timing’ inputs. Conversely, when stimulus
inputs are ‘ignored’, they are shorter, tilting the advantage
to the timing input. An intuitive way to understand how at-
tentional gain biases the competition between stimulus and
timing inputs is with our limited shopping list. If we want to
put many items on a small, limited piece of paper, some items
will become illegible. But if we should definitely not forget
the milk, we could write ‘milk’ in a larger font. This comes
at the cost of other items that have less space left. In our
network, attending to stimulus inputs is like writing items
(vectors) in a larger font (multiplying them), at the cost of
other items that have less space left.

To illustrate how attentional competition works in
the UTC model, again consider a network that represents
the sum of two orthogonal 2-dimensional vectors. When
one of the inputs is multiplied by an attentional gain fac-
tor (gs), the decodability of the attended input increases and
the decodability of the unattended input decreases (Figure
23). Therefore, our proposed mechanism captures the gen-
eral finding that attention is competitive (Reynolds & Des-
imone, 1999). When the attended and unattended inputs
are integrated in our network, it becomes clear that attended
stimuli are judged as longer than unattended stimuli. This
attentional mechanism does not just work on the level of vec-
tors but is also in line with psychophysiological and neuro-
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Figure 23
Attentional gain

Note. Left panel: Attentional gain (gs) on the left vector is varied. The decodability of the original attended vector increases, while
decodability of the unattended vector decreases (middle panel). Right panel: normalized tuning curve of example neuron. Attentional gain
primarily influences the height of the tuning curve, not its width.

physiological work on attention (e.g., Hillyard et al., 1998;
Treue, 2001) and previous modelling approaches in the Neu-
ral Engineering Framework (Bobier et al., 2014). For in-
stance, our simple attentional gain mechanism qualitatively
captures attentional modulations of tuning curves of individ-
ual neurons (e.g., McAdams & Maunsell, 1999): Attention
primarily affects the height of the curve, not its width or po-
sition (Treue, 2001).

In Figure 5, we demonstrate a typical trial in a dual-
tasking timing experiment. The UTC model assumes that
‘attending to time’ is nothing more than ignoring stimulus
inputs (for a similar perspective, see Phillips, 2012). When
stimulus inputs are ignored (i.e., lower attentional gain), the
‘timing’ input will suffer from less competition (see Figure
5). The net result is that timing inputs are more decodable,
which increases time estimates, and stimulus inputs are less
decodable, causing secondary task interference (see Figure
24. In sum, our attentional gain mechanism accounts for the
bi-directional nature of paying divided ‘attention to time’:
It both increases prospective time estimates, but also dis-
rupts secondary task performance (Brown, 2006; Brown et
al., 2013).

An important issue in the literature is how one can
distinguish timing being disrupted by a lack of attention (‘ig-
noring time’) or a surplus of memory load (‘overloading
time’). The UTC model does not decisively answer this is-
sue, but at least demonstrates why this issue is so difficult.
Attentional gain and memory load work in concert to de-
crease the decodability of the temporal vector, shortening its
subjective duration. As such, both at the level of neural rep-
resentation and behavioral performance, attentional gain and
load do similar things. However, the bi-directional interfer-
ence predicted by the UTC can possibly dissociate ‘ignoring’
time and ‘overloading’ time. Ignoring time should decrease

the length of the temporal vector, while increasing the length
of the stimulus vectors. Increasing the load, however, should
decrease the decodability of all vectors processed by the net-
work, including the stimulus vectors. Experimentally, this
means that ignoring time should hurt timing performance,
while boosting performance on a concurrent task (Macar et
al., 1994; Zakay, 1998). Increasing the load should be detri-
mental to performance on both the timing and concurrent
task (Polti et al., 2018). It would be fruitful to see to what
extent these effects can be teased apart in an experimental
paradigm that combines both manipulations of load and at-
tentional prioritization.

Integrating remembered content explains effects of con-
textual changes

As already discussed in the introduction, an inter-
val with more changes appears to last longer. This is espe-
cially the case when the changes are actively processed (Mc-
clain, 1983; Predebon, 1996) or, in the case of retrospective
timing, segmented (Poynter, 1983; Zakay et al., 1994). So
far, the UTC model assumes that time estimates scale with
how much change is encoded in a rolling temporal window,
whether those changes consist of a constant ‘timing’ input or
a varying ‘stimulus’ input. This same set of assumptions is
also able to account for the finding that intervals with more
changes are perceived as lasting longer. When more changes
are encoded by the rolling temporal window, these changes
(literally) add up to a longer time estimate of the interval that
spans those changes. This is also true for retrospective time
estimates, when no ‘timing’ input is present. When a retro-
spective time estimate is required at the end of an interval,
the UTC model adds up the amount of ‘stimulus’ changes
encoded inside the temporal window to generate an estimate
(see Equation 2).
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Figure 24
As more attention is paid to incoming stimuli (high gs),
prospective time estimates decrease while stimulus decod-
ability increases

Note. When more attention is paid to time (low gs), prospective
estimates increase, which interferes with stimulus decodability.

What happens when we vary the number of stimuli
presented to our network? We assessed this question by vary-
ing the number of stimuli without varying the total presenta-
tion time. We simulated the effect of the number of stim-
uli (N) by presenting the network with 1 − 10 inputs in 1
second. The duration of the inputs was scaled such that the
total duration of the inputs was always one second. Note
that this way of presenting inputs resembles ‘segmenting’
the input. We then read out the network state at 1.2 sec-
onds and infer a time estimate based on Equation 2. We also
varied the number of LDN dimensions (d), which controls
how precisely the inputs can be represented within the tem-
poral window. Time estimates were a decelerating function
of N (Figure 25). This pattern is consistent with the finding
that retrospective time estimates increase with the number of
perceived events (Block & Reed, 1978; Fountas et al., 2022;
Lositsky et al., 2016; Mcclain, 1983; Predebon, 1996). Fur-
thermore, the slope of this function crucially depends on the
number of LDN dimensions, since more changes can be en-
coded by additional dimensions. What happens when incom-
ing stimuli are more or less attended to? We can clearly see
that for larger gs, the signal strength increases, and therefore
retrospective time estimates increase (Figure 5 and Figure

26). This behavior is broadly consistent with the finding that
as stimulus inputs are more attended, retrospective time esti-
mates increase (Block et al., 2010; Fountas et al., 2022).

Unified temporal coding accounts for differences between
prospective and retrospective timing

In their seminal meta-analysis, Block et al. (2010)
demonstrate that prospective time estimates decrease with
increasing cognitive load, while retrospective estimates in-
crease with increasing cognitive load. This interaction effect
has been taken as evidence that prospective and retrospective
timing are different kinds of processes. In line with this rea-
soning, previous models have assumed that cognitive load af-
fects attention (prospective timing) and memory (retrospec-
tive timing) separately (Fountas et al., 2022; French et al.,
2014). That is, when cognitive load increases, ‘attention to
time’ is hindered, decreasing prospective estimates. Indepen-
dently, increased cognitive load produces more remembered
changes in memory, lengthening retrospective estimates.

The attentional mechanisms of the UTC model,
however, can simultaneously explain how cognitive load
modulates prospective, as well as retrospective estimates.
The UTC model assumes that ‘attending to time’ is noth-
ing more than ignoring ‘stimulus’ inputs. In cognitively de-
manding situations, more attention needs to be paid to in-
coming stimuli, resulting in stronger competition with the
‘timing input’. The net result is that increasing cognitive
load decreases prospective estimates (Figure 26). The ef-
fect of cognitive load on retrospective estimates is explained
by the exact same mechanism. Cognitively demanding tasks
require more attention to incoming stimuli, effectively boost-
ing their representational precision (see Figure 5), increasing
retrospective estimates that are based on the ‘stimulus’ in-
puts (Figure 26) 11. Notably, the UTC model captures this
interaction by only varying one parameter: attention to in-
coming stimuli, gs

12. Therefore, the UTC model makes con-
strained predictions regarding the relationship between cog-
nitive load, attention and time estimates.

It should be noted that there are some possible
boundary conditions for observing the interaction effect

11To match the scale of retrospective time estimates to the em-
pirical data in Block et al. (2010), we only varied the intercept (i.e.,
time estimate if no changes are encoded) and slope (i.e., how much
additional change increases estimates).

12Another explanation that is consistent with the UTC model
is that as cognitive load increases, working memory load also in-
creases. In that case, prospective estimates would decrease due to
increasing working memory load. Retrospective estimates would
increase, due to more items being encoded inside the temporal win-
dow. It is important to note, however, that whichever explanation
turns out to be viable, it is only a single factor (attention or working
memory load) that produces the ‘cognitive load’ effect in the UTC
model.
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Figure 25
Effect of the number of stimuli on change encoded in the network

Note. When more stimuli are presented to the network in the same total time, the amount of change represented by the network increases.
For low-dimensional networks, there is little effect of the number of stimuli, since multiple stimuli cannot be encoded by these networks.
Change was normalized within each network across different N.

of cognitive load on time estimation in within-participant
paradigms. For instance, Walker et al. (2022) found no ev-
idence that cognitive load modulates prospective and ret-
rospective retrospective time estimates of 8-minute and 58
minute intervals. This suggests a possible upper bound on
the timing processes that are engaged for different time in-
tervals. A recent study by Nicolaï et al. (2024) did not find
a significant interaction between working memory load and
duration judgment type (prospective vs. retrospective), using
an online adaptation of the paradigm by Polti et al. (2018). In
both studies, it is not clear how much evidence there was for
the absence of an interaction effect, but future studies should
attempt to replicate this interaction effect in controlled exper-
imental settings.

In sum, what does the UTC model suggest about
the distinction between prospective and retrospective timing;
about whether it is a difference of degree or a difference of
kind? We modelled prospective and retrospective timing by
only assuming that in prospective contexts, an additional tim-
ing input is provided to the network, which only differs in
representational content from the fluctuating, variable stimu-
lus inputs. This can be viewed as a qualitative difference be-
tween prospective and retrospective timing, but the similari-
ties are more salient. The model suggests that both forms of

timing rely on the same representational and computational
principles. Both temporal and stimulus information are rep-
resented as high-dimensional vectors and both types of infor-
mation are encoded in a rolling temporal window, where the
amount of change informs time estimates. In the case of ret-
rospective timing, these changes reflect changes in stimulus
content, whereas in the case of prospective timing, they re-
flect the integration of a constant input. And not despite, but
precisely because of these similarities, does the UTC model
explain why prospective and retrospective timing are differ-
entially influenced by cognitive load. If temporal and stimu-
lus information were represented separately, the UTC model
would not be able to capture the competition between tem-
poral and stimulus information. Further, supporting the no-
tion that both types of timing rely on the same principles, the
model suggests that cognitive load may only affect a single
underlying process: attentional gain.
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Figure 26
The effect of attention to stimuli (gs) on prospective and retrospective timing reproduces the classic interaction effect of
cognitive load (Block et al., 2010)

Note. On the y-axis, the duration judgement ratio ( testimated
ttarget

), where one indicates perfectly accurate timing. For the Block et al. (2010)
meta-analysis, cognitive load is plotted on the x-axis. For the UTC model, attention to stimuli (gs) is plotted on the x-axis and assumed to
scale with cognitive load. Prospective estimates decrease with more attention to stimuli due to working memory interference, whereas
retrospective estimates increase with more attention to stimuli due to encoding of more change.

General Discussion

Here, we have pursued one possible answer to the
question of how the brain represents and updates temporal
information, proposing the Unified Temporal Coding (UTC)
model. Instead of studying the behavior of neural networks
that were trained extensively on timing tasks, we use a recur-
rent neural network, the Legendre Delay Network (LDN),
whose connections are optimized from first principles to rep-
resent a flexible rolling window of input history. The LDN
continually updates coefficients on temporal basis functions
that together form the ever-changing representation of in-
put history. The length of the rolling window, that is, how
quickly inputs are encoded and forgotten, is controlled by
the speed of this updating process. The UTC model puts for-
ward clear and testable neural principles underlying temporal
representation. Indeed, it can account for some fundamental
behavioral and neural phenomena, such as (violations of) the
scalar property, temporal scaling of neural responses and the
effects of distracting events on timing.

The UTC model also scales naturally to more high-
dimensional inputs and complex tasks. We make the crucial
assumption that both temporal and stimulus information are

represented in the same way, by the same neural population.
We show that fundamental limits in simultaneously repre-
senting multiple temporal and stimulus inputs accounts for
both limits in working memory capacity and time percep-
tion. Further, we implemented an attentional gain mecha-
nism that not only accounts for attentional effects on prospec-
tive time estimation, but also retrospective time estimation,
thereby providing a novel unification of these seemingly dis-
tinct forms of timing.

Comparison with previous models

In his famous Principles of Psychology (1890),
William James closed his chapter on time perception with
the question ‘To what cerebral process is the sense of time
due?’. The ‘internal clock’ approach has long been the most
formalized approach to answering this question, despite its
focus on functional over more ‘cerebral’ explanations. In
recent decades, a host of alternatives to the ‘internal clock’
have been proposed, such as oscillator and memory models,
many of which are explicitly based on neural mechanisms.
The most recent example of this increased emphasis on bio-
logical plausibility are recurrent neural network (RNN) mod-
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els, providing a powerful lens through which to view timing
and time perception. Interval timing is viewed as trajectories
through complex neural spaces, quite unlike the monotonic
and one-dimensional accumulation of ‘ticks’ assumed by ‘in-
ternal clock’ models. As a result of their biological plausi-
bility and complexity, neural network models have provided
strong accounts of neural phenomena and more complex tim-
ing phenomena like pattern timing (e.g., Hardy & Buono-
mano, 2016; Hardy et al., 2018). Despite these clear ben-
efits over more traditional approaches, the representational
and computational principles underlying the performance of
neural network models are often obscure. The ‘ticks’ of a
clock clearly represent the elapsed time since the onset - and
the expected time until offset - of a relevant event. The same
basic temporal information is often present in trained neural
networks, however, the principles behind representing and
continuously updating temporal information are ill-defined.
Careful study of these artificial neural networks has proven
productive (e.g., Bi & Zhou, 2020), however, their under-
lying principles are often inferred in hindsight rather than
constructed from first principles.

How does the UTC model relate to the taxonomy
of timing models put forward in the Introduction? First,
the UTC model inherits prominent features of pacemaker-
accumulator models, memory models and recurrent neural
network models. In prospective timing contexts, a constant
input is presented to the network, similarly to how a pace-
maker provides a constant stream of ‘ticks’ to the accumula-
tor. The first dimension, representing the mean of the input
history, behaves like a (leaky) integrator, where the speed
of integration is controlled by the recurrent gain, similarly to
several PA-models (Simen et al., 2013). The UTC model also
handles the scalar property, one-shot learning and adaptive
neural ‘speed’ in similar ways. One major difference, how-
ever, is how time and stimulus information is represented.

With regard to stimulus representation, the UTC
model also shows clear similarities with memory models, es-
pecially those that represent stimulus history on a continu-
ous timeline, such as the TILT model (Howard et al., 2015;
Shankar & Howard, 2012). The conjunctive representation
of ‘what’ and ‘when’ is central to the ability of both models
to account for behavioral and neural data, and as such they
embody common principles. The main difference between
UTC and TILT is that the timeline of UTC is bounded and
flexible, whereas the timeline of TILT is (theoretically) in-
finite and fixed. One notable exception is Liu et al. (2019),
who implemented TILT in a spiking neural network. The
authors demonstrated that the timeline can be stretched or
compressed by changing the gain of the tuning curves of
individual neurons. As such, the principle of changing the
dynamics of the network by scaling the recurrent gain is not
new. However, the UTC does offer a novel perspective on
what such a recurrent gain modulation implies for represent-

ing a rolling window of history: It exactly scales window
length (θ). By extension, scaling the recurrent gain of the
network has consequences for the filtering properties of the
UTC model, but also the speed of encoding and forgetting in
working memory.

The UTC model is also a Recurrent Neural Net-
work and therefore has the same basic structure. However,
it embodies clear representational and computational princi-
ples that are derived from optimally representing a rolling
window of the past.

As we have shown, the principles embodied by the
UTC model can account for complex neural signatures and
their adaptive temporal scaling. Previous work has also
demonstrated that this rolling window can model time-cell
data well (Voelker & Eliasmith, 2018). However, it is also
clear that some distinct features of neural data are not cap-
tured by the UTC model. For instance, stimulus-selective
cells have been found in entorhinal cortex that exhibit a con-
tinuous spectrum of time-constants (Bright et al., 2020; Tsao
et al., 2018). These cells have been predicted by the TILT
model several years before they were found, and as such the
TILT model likely has an edge over the UTC model in ex-
plaining the neural substrates of long-term retrospective tim-
ing. On the other hand, we believe that some complex fea-
tures of the neural data in Wang et al. (2018), which are well
captured by the UTC model, are not anticipated by the TILT
model. Future modelling work should attempt at a formal
comparison between how well these models capture neural
data in different brain areas, given different task requirements
and on different timescales.

Another prominent dimension along which mod-
els of timing are categorized is the ‘dedicated versus intrin-
sic’ axis (Ivry & Schlerf, 2008). Dedicated models pro-
pose that timing is implemented by a single, specialized,
modality-independent neural mechanism, located in a spe-
cific network of brain areas, comprising the basal ganglia,
thalamus, cerebellum and SMA (Merchant et al., 2013). In
contrast, intrinsic models argue that any neural circuit with
physiological- or population dynamics can tell time, sug-
gesting multiple mechanisms underlie timing (Buonomano
& Laje, 2010; Motanis et al., 2018). Hence, depending on
the input modality or task, different neural structures will be
involved in timekeeping. While some noteworthy attempts
at integrating these views have been put forward (Merchant
et al., 2013), these are mainly conceptual models that de-
lineate which mechanisms, dedicated or intrinsic, obtain for
certain timescales, modalities or task requirements. Hence,
these proposals lack clear functional explanations as to why
intrinsic or dedicated timing mechanisms may be employed
in different situations. In contrast, the UTC model suggests
a possible functional account of context-dependent temporal
processing. Instead of assuming that certain neural mecha-
nisms or brain areas are inherently ‘intrinsic’ or ‘dedicated’,
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the UTC model proposes that ‘intrinsic’ networks may be
controlled - by tightly regulating inputs, dynamics and out-
puts so as to tell time in a dedicated way. Neural networks
that already generate complex temporal representations may
be ‘recruited’ for interval timing by providing a constant in-
put to the network, controlling the speed of the neural dy-
namics and tuning its readout to match task demands. This
mechanism of ‘recruiting’ neural circuits for timekeeping is
clear from the way UTC deals with prospective and retro-
spective timing: the network ‘intrinsically’13 encodes tempo-
ral information in retrospective timing tasks, however, these
same dynamics are adapted to perform prospective timing
tasks.

The UTC model also provides a different perspec-
tive on prospective and retrospective timing compared to ex-
isting models (Fountas et al., 2022; French et al., 2014). Both
GAMIT and the Predictive Processing model assume that
cognitive load affects two independent parameters: Attention
for prospective timing and memory for retrospective timing.
Conversely, the UTC model assumes that cognitive load only
affects a single parameter: Attention to stimuli. Arguably, a
separation of attention and memory would complicate expla-
nations of other phenomena. For instance, neither GAMIT
nor the Predictive Processing model explains why paying at-
tention to timing interferes with secondary task performance.
The UTC model suggests that stimulus and timing informa-
tion compete within the same neural network, resulting in
bi-directional interference.

The UTC provides a different explanation for the
effect of cognitive load and explains some phenomena that
may be beyond the scope of existing models. How could the
UTC model still be tested against alternatives, like the Pre-
dictive Processing model? A major contrasting prediction
relates to attention, stimulus encoding and timing. The Pre-
dictive Processing model assumes that as more attention is
paid to timing, more stimuli are encoded, resulting in longer
time estimates. Conversely, the UTC model assumes that as
more attention is paid to timing, stimuli are ignored, result-
ing in longer time estimates. Clearly, the Predictive Process-
ing model and the UTC model make qualitatively different
predictions regarding stimulus processing, which would be
worthwhile to test empirically.

Future Directions

The UTC model attempts to integrate phenomena
across different forms of timing (prospective - retrospective)
and levels of explanation (neurophysiological - cognitive).
Here, we will briefly outline how the UTC model may be
ideally situated to explain more complex forms of timing,
implement alternative learning and adaptation rules, and ex-
tend to other phenomena in ‘temporal cognition’.

Pattern Timing

When studying ‘interval’ timing, the temporal com-
plexity of our surroundings and actions is easily overlooked.
Humans and non-human animals are remarkably skilled
at recognizing and producing complex temporal patterns
(Hardy & Buonomano, 2016). For instance, in speech, a
wealth of information is contained, not in the isolated timings
of vowels, words or sentences, but rather their embedding in
a complex, hierarchical temporal structure. This poses a fun-
damental issue for models of interval timing: Is complex tim-
ing somehow constructed from isolated intervals, or is inter-
val timing derived from more complex temporal representa-
tions? The UTC is clearly consistent with the latter view: In-
terval timing is accomplished by integrating a constant signal
and time estimates are based primarily on the first dimension
(i.e., the mean of the temporal window), effectively ignoring
more complex temporal patterns that are encoded by the net-
work. Nevertheless, the LDN is optimized to time these more
complex patterns and embodies clear principles of temporal
representation. For instance, the dimensionality and window
size of the LDN jointly control the upper bound on the fre-
quency content that can be represented (Voelker & Eliasmith,
2018; Voelker, 2019). As more dimensions are added, higher
frequencies in the input history can be approximated, since
these higher dimensions themselves contain higher frequen-
cies (see the temporal basis function in 2). Similarly, as
window size is decreased, higher frequencies can be repre-
sented, since the entire temporal basis function is compressed
in time. Whether and how these principles apply to flexible
pattern timing remains an open question, but they are clearly
consistent with the basic observation that humans can both
perceive and produce complex temporal patterns at a range
of timescales (Hardy & Buonomano, 2016). An exciting av-
enue of future research is to test whether the UTC model
provides an intuitive account of an effect that combines the
temporal complexity and flexibility of timing, the ‘Weber-
speed’ effect: Intervals are produced more precisely when
they are embedded in faster temporal motor patterns (Hardy
et al., 2018; Slayton et al., 2020). Interestingly, Hardy et al.
(2018) have demonstrated that the effect does not result from
subdividing the interval. Instead, true warping of the neural
dynamics, which is a central tenet of UTC, seemed to best
account for the data.

Learning and Adaptation

The UTC model implements well-established learn-
ing rules (Simen et al., 2013) for adapting its window size

13Our network is optimized to represent a rolling window of in-
put history, hence, it is less intrinsic than other theoretical proposals
(e.g., Motanis et al., 2018). Nevertheless, in retrospective condi-
tions, the network’s mechanisms are clearly more ‘intrinsic’ than in
prospective conditions.
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in prospective timing tasks, matching both observed learn-
ing rates and adaptation of neural dynamics. Nevertheless,
there are still some open questions about temporal learning
that the UTC model has not addressed yet. For instance, how
does the network learn to represent coefficients on a temporal
basis function in the first place? And how does the network
learn the appropriate window size based on reinforcements,
or, alternatively, adapt window size based on the temporal
statistics of its input? Here, we will discuss how the UTC
may be able to address these issues.

The problem of how the recurrent dynamics of our
network are learned in the first place goes to the heart of un-
supervised learning. How can a neural network, without any
teaching signal, learn to represent the structure of its input?
In the case of RNN models of timing, several learning al-
gorithms have been proposed that can learn to represent the
temporal structure of its inputs (Laje & Buonomano, 2013;
Liu & Buonomano, 2009). It would be interesting to see
under which conditions these algorithms generate neural net-
works that are structurally and functionally similar to the one
used by the UTC model (Voelker & Eliasmith, 2018).

As we have demonstrated, learning appropriate
timescales for timing tasks appears more tractable. Similarly
to the UTC, many of the learning rules employed in inter-
val timing models are designed to speed up or slow down
the behavioral or neural dynamics, as to produce shorter or
longer intervals, respectively (Gavornik et al., 2009; Killeen
& Fetterman, 1988; Luzardo et al., 2013; Mikhael & Gersh-
man, 2019; Namboodiri & Shuler, 2016; Simen et al., 2011b;
Wang et al., 2020). One-shot learning rules capture the rate
of temporal learning well, however, it is not clear how they
relate to the underlying neurophysiology. While the role
of dopamine in interval timing is multifaceted (Fung et al.,
2021), it has a clear role in temporal learning. How might the
UTC model capture this central role of dopamine? The most
straightforward solution is to include reinforcement learning
(RL) for adapting the timescale of our network (Gershman
et al., 2014; Mikhael & Gershman, 2019; Petter et al., 2018).
For instance, a learning rule recently proposed by Mikhael
and Gershman (2019) (and empirically supported by Jakob
et al. (2022)) might have an intuitive mapping to components
in our network.14 This simple algorithm learns to predict
when rewards will occur after a cue. When rewards are re-
ceived earlier than expected, the ‘pacemaker-rate’ increases,
ensuring that in the future, rewards are expected to occur
earlier (and vice versa for rewards that occur later than ex-
pected). This learning rule operates on principles similar to
the one-shot learning rules (although they may be slower).
Additionally, it captures how pharmacological (Coull et al.,
2011) and optogenetic (Howard et al., 2017; Soares et al.,
2016; Toda et al., 2017) modulation of dopaminergic neu-
rons affect interval timing, and why they sometimes seem to
do so in opposite ways. As such, this learning rule would

further allow the UTC model to generate constrained predic-
tions about dopaminergic effects on timing (Mikhael & Ger-
shman, 2019), especially as they relate to gap- and distrac-
tor procedures (Buhusi, 2003). It would also allow the UTC
model to learn when rewards will occur from complex tem-
poral sequences by mapping the coefficients on its temporal
basis function to expected rewards, going beyond simple in-
tervals.

In many cases, the relevant timescale is not clearly
denoted by rewards or punishments, rendering reinforcement
learning mechanisms ineffective. For instance, modulations
in speaking rate are typically not accompanied by changes
in reward rate. Nevertheless, humans show excellent perfor-
mance on classifying time-warped speech, possibly through
the temporal scaling of cortical responses (Lerner et al.,
2014; for a different perspective, see Vagharchakian et al.,
2012). How could our network adapt the length of its tem-
poral window based on the rate of change in the input? Pre-
vious models have broadly proposed either neurophysiolog-
ical (Gütig & Sompolinsky, 2009), or network (Goudar &
Buonomano, 2018) mechanisms. It would be worthwhile
to investigate whether these mechanisms can automatically
adapt window size in the UTC model.

Temporal Cognition

’A central issue highlighted by the earlier discussed
‘dedicated versus intrinsic’ axis is the nature of temporal
cognition. On the one hand, it is clear that subjective time
is not completely abstracted from ’non-temporal’ properties
of an event. A host of stimulus features shape time percep-
tion, such as contrast, loudness, size, motion, numerosity,
and several more (Matthews & Meck, 2016). Similarly, di-
recting more attention to stimuli dilates their apparent dura-
tion. These effects can be unified by the processing principle,
as proposed by Matthews and Meck (2016): ’subjective du-
ration of a stimulus is related to the strength of its perceptual
representation’. A mapping between ’perceptual strength’
and the UTC can be readily made: perceptual strength scales
with vector magnitude. When a stimulus has high percep-
tual strength, through low-level stimulus features or cogni-
tive factors, the longer its vector, and therefore, the longer it
appears to last.

The processing principle is already embodied by
UTC to some extent. For instance, the UTC model assumes
that attentional gain scales the vector magnitude of stimuli,
increasing both their perceptual strength and their apparent

14This learning rule should have access to the reward-prediction
error (RPE; for implementation in NEF, see Rasmussen et al.,
2017), a subjective estimate of time (the decoded time estimates
in our network), ‘pacemaker rate’ (θ−1) and the temporal derivative
of the estimated value (for an overview of temporal differentiation
methods implemented in the NEF, see Tripp & Eliasmith, 2010).



40 DE JONG, VOELKER, STEWART, AKYÜREK, ELIASMITH, VAN RIJN

duration. Meanwhile, the effects of attention on percep-
tual strength are also reflected on a neural level, where tun-
ing curve height scales with perceptual strength. The UTC
model also intuitively captures the effect of working mem-
ory load, which decreases vector magnitude, and therefore
their perceptual strength and apparent duration. Reduced
neural responses with increasing working memory load have
been demonstrated in monkey electrophysiology (Buschman
et al., 2011). It seems that the UTC model may be able to ac-
count for the effects of perceptual strength on subjective time
through the intuitive mapping between perceptual strength
and vector magnitude.

Future modelling work needs to demonstrate the
feasibility of fully mapping the UTC to the processing prin-
ciple, but here we provide a simple example. Matthews et
al. (2011) found that stimulus contrast increases the judged
stimulus duration. For instance, when a bright stimulus is
presented against a dark background, it is perceived to last
longer than a dim stimulus. Crucially, this effect scales with
the duration of the stimulus. When we assume that the mag-
nitude of the stimulus input scales with its contrast (dim=0.8,
bright=0.9), the UTC model (d = 3) is able to capture over-
estimation of high-contrast inputs, an effect that scales with
stimulus duration (see Figure 27).

An exciting avenue of future research would be to
incorporate a realistic model of perceptual processing in the
input stage of UTC, so if would be able to account for more
complex stimulus-related effects. For instance, the UTC
model has so far assumed some form of self-sustained ac-
tivity underlies the perception of ‘empty’ intervals, practi-
cally equating the perception of ‘filled’ and ‘empty’ inter-
vals. However, a consistent finding in the literature is that
‘filled’ intervals are perceived as lasting longer than ‘empty’
intervals (Wearden & Ogden, 2021). More realistic assump-
tions about the perceptual processes could elucidate these
types of perceptual-temporal illusions. Such a model would,
in turn make testable predictions about the neural dynamics
underlying timing performance (see Toso et al., 2021).

Another salient feature of ‘temporal cognition’ is
that cognitive processes do not only evolve through time.
They are also sensitive to temporal contingencies in our en-
vironment and actively shape the temporal structure of our
behavior. Hence, a central question is whether temporal
representations are generated by a central mechanism from
which cognitive processes inherit their temporal sensitivity
and through which they exert influence on the timing of be-
havior, or whether temporal representations are a built-in fea-
ture of almost any cognitive process (Salet et al., 2022). Our
‘recruitment’ hypothesis proposes that, while temporal rep-
resentations are likely a built-in feature of many cognitive
processes, they are nevertheless systematically controlled, so
that their inputs, outputs and dynamics track the temporal
contingencies at hand. This hypothesis is relevant to many

Figure 27
Linking the UTC model to effects of stimulus intensity

Note. In Matthews et al. (2011), stimuli (bright or dark) were
presented against a dark background, and participants had to
verbally judge their duration. Higher contrast (bright) stimuli
expanded subjective time, and its effect increased over stimulus
duration. When we assume that vector magnitude scales with
stimulus contrast, the UTC model is able to capture these effects.

cognitive processes, such as attention (Nobre & van Ede,
2017), episodic memory (Eichenbaum, 2014) and working
memory (van Ede et al., 2017). Indeed, recent findings sug-
gest that humans can speed up the rate at which they encode
information in visual working memory when they expect lit-
tle time to do so (de Jong et al., 2023). Here, we briefly dis-
cuss decision-making, a field in which several models have
been developed that deal with adaptive timescales. We argue
that even in the absence of explicit time estimation, the speed
of evidence-accumulation and forgetting are adaptively con-
trolled so as to track temporal contingencies in the environ-
ment, suggesting a promising avenue of future research for
our UTC model.

When making decisions, we are often faced with
noisy and uncertain situations, requiring the integration of
multiple samples of evidence before committing to a choice.
The most dominant decision-making models assume that ev-
idence is accumulated without any forgetting over time, that
is, perfect integration. However, most support for these ‘per-
fect integration’ models comes from static decision-making
paradigms: The ideal starting point of evidence accumula-
tion is known beforehand (i.e., at the start of a signal), and
the underlying source of the signal remains constant through-
out the trial. Indeed, perfect integration is an optimal strat-
egy under such conditions (Bogacz et al., 2006). But when
the environment is volatile, the underlying source of the sig-
nal may change frequently, and as a result, previous evi-
dence may no longer be relevant. For instance, when de-
ciding on the location of a potentially dangerous animal on
the basis of sound, the animal may already have moved sig-
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nificantly, rendering previous information obsolete. Glaze
et al. (2015) show that an optimal observer forgets previ-
ous evidence more quickly as the environment changes more
quickly (i.e., becomes more volatile). These principles are
consistent with decision-making behavior in humans (Glaze
et al., 2015; Ossmy et al., 2013) and rats (Piet et al., 2018).
For instance, rats are able to optimally adapt their rate of
evidence integration, tracking the volatility of the environ-
ment. When rats were moved from a highly volatile envi-
ronment into a stable environment, their rate of forgetting
increased; when subsequently placed back to a stable envi-
ronment, their rate of forgetting decreased (Piet et al., 2018).
Adaptive timescales also apply to extrapolating from the im-
mediate past to the near future. Baumgarten et al. (2021)
found that humans were able to accurately predict upcom-
ing tones from sequences with naturalistic temporal patterns
over a four-fold change in input rate. These adaptive pre-
dictions were supported by neural mechanisms, as measured
by MEG, that integrated sensory evidence at flexible rates,
ensuring that roughly a constant number of samples were in-
tegrated regardless of timescale. In sum, adaptive control
of integration and forgetting is a central feature of decision-
making and as such its mapping to a flexible window size in
the UTC seems a promising avenue for future research.

Extending time in retrospect

The UTC model explains how retrospective dura-
tion judgments are made from integrating remembered stim-
ulus content, and how the strength and number of remem-
bered stimuli affect these judgments. However, the retrospec-
tive sense of time is arguably richer than that. For instance,
humans can accurately estimate how recently something hap-
pened. The accuracy and speed of recency judgments have
been explained in some detail by the TILT model (Tiganj
et al., 2022), by assuming that stimuli are stored on a log-
arithmically compressed internal timeline. The UTC model
also stores stimuli on an internal timeline, and as can be seen
from Figure 3, the recency and relative order of stimuli can
be readily decoded from the window. As such, the basic
ingredients for recency judgements are present in the UTC
model. However, we need to make additional assumptions
on exactly how these temporal are read out. For instance,
empirical evidence suggests backward (Tiganj et al., 2022)
or forward scanning (Chan et al., 2009) through an internal
timeline. Similarly, the UTC model represents the serial or-
der of stimuli, and therefore has the basic capacity to tell
which came first. Future modeling work should focus on how
the UTC model may explain recency and order judgments,
which are an important component of retrospective timing.

The UTC model offers a unified account of prospec-
tive and retrospective timing by assuming both result from
the readout of a common memory network. Should we ex-
pect the UTC model to also account for phenomena in the

wider memory literature? We believe this question remains
to be addressed. However, at a minimum, the UTC tries to
explain some rudimentary phenomena in working memory.
For instance, why it has capacity limitations, how informa-
tion is encoded and forgotten and how that is supported by
neural dynamics. For instance, when humans expect to have
little time for encoding information, they are able to increase
their encoding speed (de Jong et al., 2023). The UTC model
can explain these adaptive speedups intuitively by appealing
to adaptations in recurrent gain, which scales the speed of
encoding in the temporal window. Given its fit to the work-
ing memory phenomena considered in this manuscript, and
its potential to explain the dynamics of working memory en-
coding and forgetting, we believe that the UTC model is at
least promising as a neural model of working memory.

Whether the specific implementation of memory in
the UTC model (i.e., the LDN network) would also extend
to long-term memory remains to be seen. There is no in
principle limit to the size of the temporal window, and mul-
tiple LDN networks can be stacked to substantially extend
it (Voelker, 2019). Also, as we have shown, the window
size can be learned very quickly, and could therefore also
adapt to how long information needs to be stored. However,
it seems plausible that durable long-term memories utilize a
more durable format than ongoing neural activity patterns.
Furthermore, long-term memory for when events happened
likely depends on a multitude of non-temporal factors from
which temporal information can be reconstructed. Clearly,
such types of temporal judgements would benefit from in-
tegration with long-term associative and semantic memory,
as has been proposed by the Predictive Processing model
(Fountas et al., 2022).

However, even if the memory system of the UTC
model would not extend to these longer timescales, it could
still inform future theoretical approaches to retrospective
timing in long-term memory. The most important principle
embodied by the UTC is that, at a crucial stage in processing,
prospective timing information is coded conjunctively with
stimulus information; and as a result of limited representa-
tional resources, they compete. As a consequence, it makes
clear predictions (and model prescriptions) for how attention,
memory load, and concurrent prospective timing influence
the strength of memories encoded in working memory. To
the extent that strength in working memory determines long-
term memory performance, UTC’s principles of conjunctive,
competitive coding could extend to duration information in
long-term memory. This seems like a promising prospect, es-
pecially given the proposed mapping of the UTC to the pro-
cessing principle (see previous section). In fact, long-term
memory strength is modulated by several factors that influ-
ence working memory strength. For instance, attention to in-
formation in working memory affects later LTM performance
(Jeanneret et al., 2023) and items encoded at higher set sizes
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decrease LTM strength (Forsberg et al., 2021). As such, the
conjunctive, competitive coding of the UTC would predict
that attended items, and items that suffered less from compe-
tition of other items, would be remembered as having lasted
longer. Conversely, to the extent that concurrent prospective
timing impairs working memory strength, they should also
impair long-term memory performance, and therefore their
remembered duration. These predictions remain to be tested,
but it demonstrates that the UTC can generate novel predic-
tions based on some of its core principles.

Concluding Remarks

Here, we have proposed a neurocomputational
model of timing, the Unified Temporal Coding (UTC)
model, that aims to unify prospective and retrospective tim-
ing through theoretically well-grounded representational and
computational principles. The UTC model explains confor-
mity and violations of the scalar property, neural population
dynamics underlying time perception and time production,
timing behavior under normal and distracting conditions,
common capacity limits in timing and working memory, and
how timing depends on attentional modulations. Strikingly,
by assuming that prospective and retrospective timing rely
on the same principles and are implemented in the same neu-
ral circuit, our attentional gain mechanism can resolve the
apparently paradoxical effect of cognitive load on prospec-
tive and retrospective timing. Further, the UTC model sug-
gests that explicit interval timing does not depend on a ded-
icated mechanism, nor is it a simple by-product of intrinsic
neural dynamics. Instead, adaptive interval timing behavior
is accomplished by appropriately controlling the inputs, dy-
namics and outputs of neural circuits that are tuned to rep-
resent a flexible window of their input history. In sum, the
UTC model embodies clear representational and computa-
tional principles, providing an initial attempt to unify time in
passing, and time in retrospect.
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Appendix A

Legendre Delay Network
In the design of the Legendre Delay Network (LDN), we will
argue from first principles: What would be the optimal algo-
rithm for the problem of remembering the past15? First, let
us specify what it means to remember a series of events as
the ability to reproduce those events without distortion. The
‘optimal’ algorithm will be one that perfectly reproduces the
past at an arbitrary time in the future without distortions. We
also note that in the ideal case, this is true for continuous
time: we cannot know in advance what moments in time are
important or not, so we should apply our algorithm to every
moment in time. However, storing all information at every
continuous moment in time would require infinite resources,
not just in a simulation of this algorithm, but in neural im-
plementations. As this is impossible to attain, our algorithm
needs to satisfy the constraint of finite resources.

Figure A1
Delaying a continuous-time input by two seconds

Note. This figure illustrates the challenge of delaying an input. The
top panel shows a continuous-time signal that is delayed for two
seconds, as shown in the bottom panel. While individual dots and
lines represent how inputs are delayed, this is only done for clarity:
The input is continuous in time, and therefore an infinite number of
dots and lines would need to be displayed.

A quantification of this approach is shown in Figure
A1 and A2. The continuous input events are u(t) (see Figure
A1). A perfect reproduction of those events at some later
time would be x(t) = u(t − θ), where θ is the length of time
between ‘now’ and that ‘later time’. Essentially, we are stor-
ing the signal for the period θ. We can think of the system as
‘delaying’ the input by θ, providing an exact copy shifted by
θ (see Figure A1). Notably, x(t) would need to have infinite
dimensions if it were to delay a single continuous-time in-
put, regardless of how long we want to delay that input (see
Figure A2).

The Legendre Delay Network (LDN) is a system
that optimally solves this challenge given finite resources
(Voelker et al., 2019). Specifically, it has provably the small-

15For a complete derivation (which is based on taking the Padé
approximation of the Laplace transform of a pure delay (u(t − θ))
and discussion of Legendre Memory, see Voelker (2019).
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Figure A2
Delaying an input for two seconds using infinite memory ca-
pacity

Note. One way to solve the delay challenge is to store each input
for exactly two seconds. However, if this solution is applied for
continuous-time signals, we would need to store an infinite number
of inputs, regardless of the length of the delay.

est possible error given a specific number of resources com-
pared to a perfect delay. These resources can be thought of
as neurons in a neural network or, in the context of the LDN,
as dimensions in a function space. Specifically, instead of
implementing a perfect delay with an infinite storage capac-
ity (x(t) = u(t − θ)) we approximate this delay using a finite
function space P that is defined over the interval (t, t − θ):

d−1∑
i=0

Pi

(
θ′

θ

)
xi(t) ≈ u(t − θ) (3)

where d is the highest dimension in the function space (i.e.,
the order of our approximation, or the number of resources
available), θ is the length of the delay and θ′ are the values
between 0 and θ, and xi is the vector containing coefficients
on the function space.

The dimensions in function space that are optimal
for approximating a delay are Shifted Legendre polynomials:
P:

Pi(r) = (−1)i
i∑

j=0

(
i
j

)(
i + j

j

)
(−r) j (4)

These Legendre polynomials can be interpreted as
temporal basis functions that represent a rolling window of
the last θ seconds of input history, similarly to how sines and
cosines can form a basis for signals in the frequency domain.
We can then approximate input history by taking a linear
combination (i.e., weighted sum) of the temporal basis func-
tions. The coefficients on each polynomial (i.e., the weights,
x), are generated so that their sum is an approximation of
input history (see Figure 2). The formal dynamical system
that generates x on-the-fly is described in the main text ().

Appendix B

Neural Engineering Framework
This algorithm can be implemented in the Neural Engineer-
ing Framework (NEF) (Eliasmith & Anderson, 2003), as im-
plemented in the python library Nengo (Bekolay, Bergstra,
et al., 2014). The NEF uses three general principles to im-
plement computations in neural networks: representation,
transformation, and dynamics (for detailed discussions of
these principles, see Eliasmith & Anderson, 2003; Stewart
& Eliasmith, 2014; Stöckel & Eliasmith, 2021; Voelker &
Eliasmith, 2018). The NEF has been used to build mod-
els of working memory (Duggins et al., 2017; Gosmann &
Eliasmith, 2020; Singh & Eliasmith, 2006), long-term mem-
ory (Gosmann & Eliasmith, 2020), attention (Bobier et al.,
2014), action selection (Stewart et al., 2012) and reinforce-
ment learning (Rasmussen et al., 2017), and a large-scale
cognitive architecture, SPAUN (Eliasmith et al., 2012). No-
tably, the NEF has also been used to construct models that
are able to track time (Bekolay, Laubach, et al., 2014; Singh
& Eliasmith, 2006; Stöckel et al., 2021). For instance, Beko-
lay, Laubach, et al. (2014) constructed a ‘double-integrator’
network that was able to track elapsed time, which opti-
mized task performance in a simple reaction-time experi-
ment. Stöckel et al. (2021) have used the NEF to construct a
biologically detailed model of the cerebellar circuits under-
lying eyeblink conditioning, using the LDN. Here, we briefly
review the methods of the NEF focusing on those aspects that
are relevant to the UTC model.

Principle 1: Representation

The NEF assumes that the representation of a vari-
able can be described in terms of its encoding and decoding.
The encoding process describes how an input x is captured by
the system. In our case, the input is captured by spiking neu-
ral activity. For decoding, the system needs to explain how,
given the neural activity a that is encoding x, a downstream
neuron can have access to the value of x. Together, encoding
and decoding define the representation of the variable.

Our algorithm has several variables that we would
like to represent with the activity of spiking neurons. For
instance, the coefficients x(t) are explicitly represented and
updated by the algorithm. Principle 1 in the NEF, Represen-
tation, provides methods for capturing such representations.
Specifically, if we want to represent a vector x with neurons,
the activity of the neurons a should reflect changes in x over
time. We can describe this relationship as follows:

ai(x) = Gi[Ji(x)] (5)

where Gi[.] is a non-linear function that generates neural
spikes and Ji is the input current to the neuron’s soma. NEF
allows for explaining how such abstractions map to biolog-
ical processes, like somatic currents, neural spiking, tuning
curves, and synaptic transmission.
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To begin, we will discuss how neurons encode in-
formation into spike trains. Representing x requires that the
neurons should be sensitive to changes in x. This is imple-
mented by assuming that each neuron i is associated with
a preferred input, represented by a randomly chosen unit-
length encoder ei. The more similar x is to ei, the higher the
input current (Ji) received by neuron i, and thus the higher its
firing rate. The unit-length encoders can be chosen to match
recorded neuron tuning curves, but for this model, we use the
default method of choosing these randomly.

Figure B1
Gain (α) and bias (β) determine the slope and intercept of
neural tuning curves

Note. The input scalar x is plotted on the x-axis and firing rate (in
Hz.) is plotted on the y-axis.

The current Ji is determined by a randomly chosen
gain αi, which determines the slope of the response function,
and bias βi, which determines the intercept of the response
function (Figure B1). As for the encoders, these could be set
to match known neuron tuning in future work. The full equa-
tion for the current driving the neural nonlinearity is thus:

Ji(x) = αi〈x, ei〉 + βi (6)

where 〈.〉 is the dot product (Figure B2).
As shown in Figure B3, these equations and random

choices of neuron parameters serve to capture the known het-
erogeneity of neural systems. Distributing parameters in this
manner makes it feasible to test possible neuron responses in
specific applications. For instance, we will show later that
assuming heterogeneous tuning curves captures the observed
heterogeneity of firing patterns in timing experiments (see
section Changes in window size explain temporal scaling in
complex neural patterns).

In all simulations reported in this manuscript, we
use the leaky integrate-and-fire (LIF) neuron model (but the
NEF extends to more complex neuron models, see (Duggins
et al., 2017)). In the LIF neuron, each time the membrane
voltage V crosses some threshold Vthresh, the neuron gener-
ates a spike and resets to its resting state for the duration of
the refractory period τref. We can represent the spiking activ-
ity of a neuron as a series of delta functions, where each delta

Figure B2
Tuning curves for individual neurons in a population

Note. Heterogeneity in encoders (sensitivity to direction of x, i.e.,
positive or negative values), intercepts (values when the neuron
starts firing) and gains (slope of tuning curves) allow for efficient
representation of x. For instance, the orange neuron is sensitive to
negative values, whereas the blue neuron starts firing more when
positive values are represented. The orange neuron has a steeper
slope (i.e., a higher gain) and also a different intercept (i.e.,
different bias).

function is located at a spike time (Figure B3), tm, giving the
train of spikes as:

ai =
∑

m

δ(t − tm) (7)

Given the neural activity a that is encoding x, down-
stream neurons should be able to infer the value of x. The
process of the downstream neuron extracting that informa-
tion is called decoding. However, downstream neurons do
not have direct access to spiking activity of upstream neu-
rons. Notably, as spikes arrive at the end of the sending neu-
ron’s axon, they result in neurotransmitters being released
across the synaptic cleft, which induces a post-synaptic cur-
rent (PSC) on the dendrites of the receiving neuron. We
model this PSC as a simple exponentially decaying current:

h(t) = e−t/τPSC (8)

where τPSC is the time-constant of the PSC’s decay. Biologi-
cally, τPSC depends on how long the ion channels (of the post-
synaptic neuron) opened by the neurotransmitter remain in
their open state. For instance, τPSC is around 5ms for AMPA,
10ms for GABA, and 100ms for NMDA receptors. Given
some spike train that encodes x, we can characterize the raw,
unweighted current that could be injected into a cell as:

ai =
∑

m

h(t − tm). (9)
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This equation can be thought of as applying the PSC model
to each spike as it arrives and summing up the result (Figure
B3). Notably, this filtered input does not map to observable
currents, but is instead a useful theoretical construct that cap-
tures temporal decoding. In other words, it describes what
kind of temporal variability is evident in the incoming spike
train from one presynaptic cell.

Where the above describes the input of a single cell,
x is obviously encoded by a population of cells. Decoding of
a representation that may be distributed over a population of
neurons requires ‘spatial’ decoding. Because different neu-
rons may encode different parts of the x space, considering
all of them is essential for fully decoding the information in
the encoding population. Specifically, the NEF suggests how
to solve for a set of optimal spatial decoders d, using regu-
larized least-squares optimization, while taking into account
some level of noise. Combining the spatial and temporal de-
coding that optimally decodes out an estimate of our original
vector x gives the estimate x̂, that is:

x̂ =

N,M∑
i,m

h(t − tim)di (10)

where N is the number of neurons in the encoding popula-
tion, M is the number of spikes, i indexes the neurons, m
indexes the spikes, h(t) is the PSC of the receiving neuron,
x̂ is an estimate of our original input vector x and di is a
decoder for neuron i to optimally represent x (Figure B3).

As shown in Figure B3, we have fully mapped the
process of encoding and decoding an input variable x to neu-
robiological processes, thus specifying an implementation
method for the representations in our algorithm.

Principle 2: Transformation

Principle 2 of the NEF, Transformation, describes
how to implement linear and nonlinear computations with
the represented variables. That is, it specifies how a neuro-
biological system can transform some representation of x to
some function of x, f (x). Usefully, Principle 1, Representa-
tion, is a special case of Principle 2, Transformation: When
we represented a vector x, we defined the loss function of our
regularized-least squared problem as the difference between
x and our estimate x̂. However, we can think of transforming
x, as decoding out a certain function of x, f (x) from our neu-
ral activity. Hence, the loss function of our regularized least-
squares problem becomes the difference between f (x̂) and
f (x). The resulting decoders d f will compute the function
f (x) (Figure B3).

The above describes a general method for comput-
ing arbitrary functions of the variables represented using
Principle 1, without introducing new neurobiological map-
pings. That is, the connection weights between neurons in
subsequent populations combine the encoding and decod-
ing/transformations of the NEF. Hence, connection weights

can be analytically derived given the desired function f (x),
without assuming that encoders and decoders have some neu-
robiological analogue.

Principle 3: Dynamics

To this point, we have described how to character-
ize the transformations and representations in our algorithm.
However, we have not yet described how to implement the
core linear dynamical system (Equation 1). Principle 3 of
the NEF exploits Principles 1 and 2 to implement arbitrary
dynamical systems (of which our network, see equation 1, is
an instance) in spiking neurons:

ẋ(t) = Ax(t) + Bu(t) (11)

Principle 3, Dynamics, tells us how to implement
a dynamical system of this form in a recurrent spiking neu-
ral network. Under mild assumptions, the dynamics of the
spiking recurrent neural network are dominated by the PSC
(h(t) = e−t/τPSC ). In other words, we can treat the PSC as the
dynamical primitive of our dynamical system (Eliasmith &
Anderson, 2003). To get the dynamics defined in Equation
1, we need to map the equation with the dynamical primitive
of integration (Equation 1) to an equivalent equation with a
dynamical primitive of the PSC. Or, more intuitively speak-
ing, we need to take into account the fact that information
decays over time because of the PSC, while it is perfectly re-
membered by integration. To illustrate, when a spike would
arrive at some process that integrates perfectly, no informa-
tion would be forgotten. But when that same spike arrives at
a post-synaptic neuron, the information that this spike carries
is lost over time because of the PSC (see Figure B3). There-
fore, we have to figure out how strongly we should ‘remind’
the state-vector of its previous state to precisely counteract
this PSC ‘forgetting’. In order to do this, we should adjust
the dynamics matrix A and input matrix B. For linear sys-
tems, this adjustment is proposed by the NEF as follows (for
a full derivation, see Eliasmith & Anderson, 2003)):

A′ = τA + I (12)
B′ = τB (13)

where A′ is our neural recurrent transformation and B′ is our
neural input transformation.

For our specific network, we want to be able to con-
trol θ on-the-fly as well, in order to encode intervals that
vary widely in timescale. If we solve for ẋ in Equation 1,
we see that A and B should be multiplied by θ−1. That is,
the recurrent gain on A and B is inversely proportional to θ
(Voelker, 2019). For instance, if we want θ to be 2 seconds,
we should multiply the recurrent gain we already have (τ)
with a multiplication factor (θ−1 = 0.5). We introduce a neu-
ral population θ−1 that represents this multiplication factor
on the recurrent gain. This allows us to adaptively control
the recurrent gain and therefore θ (Figure 4).
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Figure B3
Representation and Transformation with the Neural Engineering Framework (NEF)

d f

Note. We feed an input signal (top row) into a population of spiking neurons. The tuning curves describe how this input drives the spiking
frequency of individual neurons. For instance, the blue neuron is sensitive to positive inputs and the orange neuron to negative inputs
(second row; also see previous figure). A downstream population of neurons receive post-synaptic potentials (PSC) for which we use a
lowpass filter (third row). The original signal (black) or a transformation of the original signal (x2; grey curve) can be read out by applying
an optimal set of decoders df .

This completes our characterization of the imple-
mentation of all elements of our algorithm using the NEF.
The resulting model is a recurrent neural network consist-
ing only of standard LIF spiking neurons with connection
weights between them that are determined by the A, B, d,
and e matrices, and a simple exponential synapse model.

Appendix C
Modelling Buhusi (2012)

For the fit to Buhusi (2012), we need to model how objective
sound intensity maps onto the vectors that our neural popu-

lations represent. First, we assumed a power-law mapping
between sound intensity (I, in W/m2) to subjective loudness
(L; Stevens, 1956):

L = kIm (14)

where k is a free scaling parameter that was fit in-
dividually for each experiment (experiment 1: k = 2.5; ex-
periment 2: k = 5), and we used the estimated exponent
m = 0.09 from (Pardo-Vazquez et al., 2019), who mod-
eled sound intensity discrimination in rats using a power-law
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function. Subsequently, we converted the experimental val-
ues (40 - 100 dB) on this subjective loudness scale to Spatial
Semantic Pointers (Komer et al., 2019). These vectors can
represent continuous values by exponentiating a vector with
a real value (in our case, subjective loudness):

S S P = xL (15)

where S S P is a spatial semantic pointer and x is a unitary
vector (which doesn’t change length when circular convo-

lution is applied). Vectors are exponentiated by first taking
their Fourier transform F {·}, then doing an element-wise ex-
ponentiation on those complex numbers and then doing the
inverse Fourier transform:

xL = F −1{F {x}L} (16)

These vectors, in turn, exhibit is a smooth function of sub-
jective similarity with respect to physical similarity (Komer
et al., 2019).
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