
LETTER Communicated by Daniel Durstewitz

A Unified Approach to Building and Controlling Spiking
Attractor Networks

Chris Eliasmith
celiasmith@uwaterloo.ca
Department of Philosophy and Department of Systems Design Engineering,
University of Waterloo, Waterloo, Ontario, Canada

Extending work in Eliasmith and Anderson (2003), we employ a general
framework to construct biologically plausible simulations of the three
classes of attractor networks relevant for biological systems: static (point,
line, ring, and plane) attractors, cyclic attractors, and chaotic attractors. We
discuss these attractors in the context of the neural systems that they have
been posited to help explain: eye control, working memory, and head di-
rection; locomotion (specifically swimming); and olfaction, respectively.
We then demonstrate how to introduce control into these models. The
addition of control shows how attractor networks can be used as subsys-
tems in larger neural systems, demonstrates how a much larger class of
networks can be related to attractor networks, and makes it clear how
attractor networks can be exploited for various information processing
tasks in neurobiological systems.

1 Introduction

Persistent activity has been thought to be important for neural computa-
tion at least since Hebb (1949), who suggested that it may underlie short-
term memory. Amit (1989), following work on attractors in artificial neural
networks (e.g., that of Hopfield, 1982), suggested that persistent neural ac-
tivity in biological networks is a result of dynamical attractors in the state
space of recurrent networks. Since then, attractor networks have become a
mainstay of computational neuroscience and have been used in a wide
variety of models (see, e.g., Zhang 1996; Seung, Lee, Reis, & Tank, 2000;
Touretzky & Redish, 1996; Laing & Chow, 2001; Hansel & Sompolinsky, 1998;
Eliasmith, Westover, & Anderson, 2002). Despite a general agreement
among theoretical neuroscientists that attractor networks form a large and
biologically relevant class of networks, there is no general method for con-
structing and controlling the behavior of such networks. In this letter, we
present such a method and explore several examples of its application, sig-
nificantly extending work described in Eliasmith and Anderson (2003). We
argue that this framework can both unify the current use of attractor net-
works and show how to extend the range of applicability of attractor models.

Neural Computation 17, 1276–1314 (2005) © 2005 Massachusetts Institute of Technology



Controlling Spiking Attractor Networks 1277

Most important, perhaps, we describe in detail how complex control can be
integrated with standard attractor models. This allows us to begin to an-
swer the kinds of pressing questions now being posed by neuroscientists,
including, for example, how to account for the dynamics of working mem-
ory (see, e.g., Brody, Romo, & Kepecs, 2003; Fuster, 2001; Rainer & Miller,
2002).

We briefly summarize the general framework and then demonstrate its
application to the construction of spiking networks that exhibit line, plane,
ring, cyclic, and chaotic attractors. Subsequently, we describe how to inte-
grate control signals into each of these models, significantly increasing the
power and range of application of these networks.

2 Framework

This section briefly summarizes the methods described in Eliasmith and
Anderson (2003), which we will refer to as the neural engineering frame-
work (NEF). Subsequent sections discuss the application of these methods
to the construction and control of attractor networks. The following three
principles describe the approach:

1. Neural representations are defined by the combination of nonlinear
encoding (exemplified by neuron tuning curves and neural spiking)
and weighted linear decoding (over populations of neurons and over
time).

2. Transformations of neural representations are functions of the vari-
ables represented by neural populations. Transformations are deter-
mined using an alternately weighted linear decoding.

3. Neural dynamics are characterized by considering neural representa-
tions as control-theoretic state variables. Thus, the dynamics of neu-
robiological systems can be analyzed using control theory.

In addition to these main principles, the following addendum is taken to be
important for analyzing neural systems:

� Neural systems are subject to significant amounts of noise. Therefore,
any analysis of such systems must account for the effects of noise.

Each of the next three sections describes one of the principles, in the con-
text of the addendum, in more detail. (For detailed justifications of these
principles, see Eliasmith & Anderson, 2003.) They are presented here to
make clear both the terminology and assumptions in the subsequent net-
work derivations. The successes of the subsequent models help to justify
the adoption of these principles.



1278 C. Eliasmith

2.1 Representation. Consider a population of neurons whose activities
ai (x) encode some vector, x. These activities can be written as

ai (x) = Gi [J i (x)] , (2.1)

where Gi is the nonlinear function describing the neuron’s response func-
tion, and J i (x) is the current entering the soma. The somatic current is given
by

J i (x) = αi 〈x · φ̃i 〉 + J bias
i , (2.2)

where αi is a gain and conversion factor, x is the vector variable to be en-
coded, φ̃i determines the preferred stimulus of the neuron, and J bias

i is a
bias current that accounts for background activity. This equation provides
a standard description of the effects of a current arriving at the soma of
neuron i as a result of presenting a stimulus x.

The nonlinearity Gi that describes the neuron’s activity as a result of
this current can be left undefined for the moment. In general, it should be
determined experimentally, and thus based on the intrinsic physiological
properties of the neuron(s) being modeled. The result of applying Gi to the
soma current J i (x) over the range of stimuli gives the neuron’s tuning curve
ai (x). So ai (x) defines the encoding of the stimulus into neural activity.

Given this encoding, the original stimulus vector can be estimated by
decoding those activities, for example,

x̂ =
∑

i

ai (x)φi . (2.3)

These decoding vectors, φi , can be found by a least-squares method (see the
appendix; Salinas & Abbott, 1994; Eliasmith & Anderson, 2003). Together,
the nonlinear encoding in equation 2.1 and the linear decoding in equation
2.3 define a neural population code for the representation of x.

To incorporate a temporal code into this population code, we can draw on
work that has shown that most of the information in neural spike trains can
be extracted by linear decoding (Rieke, Warland, de Ruyter van Steveninck,
& Bialek, 1997). Let us first consider the temporal code in isolation by taking
the neural activities ai (t) to be decoded spike trains, that is,

ai (t) =
∑

n

hi (t) ∗ δi (t − tn) =
∑

n

hi (t − tn), (2.4)

where δi (·) are the spikes at times tn for neuron i , and hi (t) are the linear
decoding filters, which, for reasons of biological plausibility, we can take to
be the (normalized) postsynaptic currents (PSCs) in the subsequent neuron.
Elsewhere it has been shown that the information loss under this assumption
is minimal and can be alleviated by increasing population size (Eliasmith



Controlling Spiking Attractor Networks 1279

& Anderson, 2003). As before, the encoding on which this linear decoding
operates is defined as in equation 2.1, where Gi is now taken to be a spiking
nonlinearity.

We can now combine this temporal code with the previously defined
population code to give a general population temporal code for vectors:

δ(t − tin) = Gi
[
αi 〈x · φ̃i 〉 + J bias

i

]
Encoding

x̂ = ∑
i,n hi (t − tn)φi Decoding.

2.2 Transformation. For such representations to be useful, they must
be used to define transformations (i.e., functions of the vector variables).
Fortunately, we can again find (least-squares optimal) decoders φ

f (x)
i to

perform a transformation f (x). So instead of finding the optimal decoders
φi to extract the originally encoded variable x from the encoding, we can
reweight the decoding to give some function f (x) other than identity (see the
appendix). To distinguish the representational decoders φi from φ

f (x)
i , we

refer to the latter as transformational decoders. Given this characterization,
it is a simple matter to rewrite the encoding and decoding equations for
estimating some function of the vector variable:

δ(t − tin) = Gi
[
αi 〈x · φ̃i 〉 + J bias

i

]
Encoding

f̂ (x) = ∑
i,n hi (t − tn)φ f (x)

i Decoding.

Notably, both linear and nonlinear functions of the encoded variable can
be computed in this manner (see Eliasmith & Anderson, 2003, for further
discussion).

2.3 Dynamics. Dynamics of neural systems can be described using the
previous characterizations of representation and transformation by employ-
ing modern control theory. Specifically, we can allow the higher-level vector
variables represented by a neural population to be control-theoretic state
variables.

Let us first consider linear time-invariant (LTI) systems. Recall that the
state equation in modern control theory describing LTI dynamics is

ẋ(t) = Ax(t) + Bu(t). (2.5)

The input matrix B and the dynamics matrix A completely describe the
dynamics of the LTI system, given the state variables x(t) and the input u(t).
Taking the Laplace transform of equation 2.5 gives

x(s) = h(s) [Ax(s) + Bu(s)] ,

where h(s) = 1
s . Any LTI control system can be written in this form.



1280 C. Eliasmith

In the case of neural systems, the transfer function h(s) is not 1
s but is

determined by the intrinsic properties of the component cells. Because it is
reasonable to assume that the dynamics of the synaptic PSC dominate the
dynamics of the cellular response as a whole (Eliasmith & Anderson, 2003),
it is reasonable to characterize the dynamics of neural populations based
on their synaptic dynamics, that is, using hi (t) from equation 2.4.

A simple model of a synaptic PSC is given by

h′(t) = 1
τ

e−t/τ , (2.6)

where τ is the synaptic time constant. The Laplace transform of this filter is

h′(s) = 1
1 + sτ

.

Given the change in filters from h(s) to h′(s), we now need to determine
how to change A and B in order to preserve the dynamics defined in the
original system (i.e., the one using h(s)). In other words, letting the neu-
ral dynamics be defined by A′ and B′, we need to determine the relation
between matrices A and A′ and matrices B and B′ given the differences be-
tween h(s) and h′(s). To do so, we can solve for x(s) in both cases and equate
the resulting expressions for x(s). This gives

A′ = τA + I (2.7)

B′ = τB. (2.8)

This procedure assumes nothing about A or B, so we can construct a neu-
robiologically realistic implementation of any dynamical system defined
using the techniques of modern control theory applied to LTI systems (con-
strained by the neurons’ intrinsic dynamics). Note also that this derivation
is independent of the spiking nonlinearity, since that process is both very
rapid and dedicated to encoding the resultant somatic voltage (not filtering
it in any significant way). Importantly, the same approach can be used to
characterize the broader class of time-varying and nonlinear control systems
(examples are provided below).

2.4 Synthesis. Combining the preceding characterizations of represen-
tation, transformation, and dynamics results in the generic neural subsys-
tem shown in Figure 1. With this formulation, the synaptic weights needed
to implement some specified control system can be directly computed. Note
that the formulation also provides for simulating the same model at various
levels of description (e.g., at the level of neural populations or individual
neurons, using either rate neurons or spiking neurons, and so on). This is
useful for fine-tuning a model before introducing the extra computational
overhead involved with modeling complex spiking neurons.



Controlling Spiking Attractor Networks 1281

Mαβ

Mαβ'

1
j
Fβ

j
Fβ'

i
α Gi[.]

... ... ... ...

Ji
α(t)

synaptic weights

soma

higher-level 
description

neural description

1

∼

PSCs

dendrites

Fαβ[xβ(t)]

Fαβ'[xβ'(t)]1+sτij

Σδα(t-tin)
n

Σδ
β

Σδ
β

(t-tjn)
n

'(t-tjn)
n

αβ'

1+sτij
αβ

φ

φ

φ

Figure 1: A generic neural population systems diagram. This figure is a combi-
nation of a higher-level (control-theoretic) and a neural-level system description
(denoted by dotted lines). The solid boxes highlight the dendritic elements. The
right-most solid box decomposes the synaptic weights into the relevant matri-
ces. See the text for further discussion. (Adapted from Eliasmith & Anderson,
2003.)

In Figure 1, the solid lines highlight the dendritic components, which
have been separated into postsynaptic filtering by the PSCs (i.e., temporal
decoding) and the synaptic weights (population decoding and encoding).
The weights themselves are determined by three matrices: (1) the decoding
matrix, whose elements are the decoders φ

Fβ

i for some (nonlinear) function
F of the signal xβ (t) that comes from a preceding population β; (2) the en-
coding matrix, whose elements are the encoders φ̃α

i for this population; and
(3) the generalized transformation matrix Mαβ , which defines the transfor-
mations necessary for implementing the desired control system.

Essentially, this diagram summarizes the three principles and their in-
terrelations. The generality of the diagram hints at the generality of the un-
derlying framework. In the remainder of the article, however, I focus only
on its application to the construction and control of attractor networks.

3 Building Attractor Networks

The most obvious feature of attractor networks is their tendency toward
dynamic stability. That is, given a momentary input, they will settle on a
position, or a recurring sequence of positions, in state space. This kind of
stability can be usefully exploited by biological systems in a number of
ways. For instance, it can help the system react to environmental changes



1282 C. Eliasmith

on multiple timescales. That is, stability permits systems to act on longer
timescales than they might otherwise be able to, which is essential for
numerous behaviors, including prediction, navigation, and social interac-
tion. In addition, stability can be used as an indicator of task completion,
such as in the case of stimulus categorization (Hopfield, 1982). As well,
stability can make the system more robust (i.e., more resistant to undesir-
able perturbations). Because these networks are constructed so as to have
only a certain set of stable states, random perturbations to nearby states
can quickly dissipate to a stable state. As a result, attractor networks have
been shown to be effective for noise reduction (Pouget, Zhang, Deneve, &
Latham, 1998). Similarly, attractors over a series of states (e.g., cyclic attrac-
tors) can be used to robustly support repetitive behaviors such as walking,
swimming, flying, or chewing.

Given these kinds of useful computational properties and their natural
analogs in biological behavior, it is unsurprising that attractor networks
have become a staple of computational neuroscience. More than this, as
the complexity of computational models continues to increase, attractor
networks are likely to form important subnetworks in larger models. This
is because the ability of attractor networks to, for example, categorize, filter
noise, and integrate signals makes them good candidates for being some of
the basic building blocks of complex signal processing systems. As a result,
the networks described here should prove useful for a wide class of more
complex models.

To maintain consistency, all of the results of subsequent models were
generated using networks of leaky integrate-and-fire neurons with abso-
lute refractory periods of 1 ms, membrane time constants of 10 ms, and
synaptic time constants of 5 ms. Intercepts and maximum firing rates were
chosen from even distributions. The intercept intervals are normalized over
[−1, 1] unless otherwise specified. (For a detailed discussion of the effects
of changing these parameters, see Eliasmith & Anderson, 2003.)

For each example presented below, the presentation focuses specifically
on the construction of the relevant model. As a result, there is minimal
discussion of the justification for mapping particular kinds of attractors onto
various neural systems and behaviors, although references are provided.

3.1 Line Attractor. The line attractor, or neural integrator, has recently
been implicated in decision making (Shadlen & Newsome, 2001; Wang,
2002), but is most extensively explored in the context of oculomotor con-
trol (Fukushima, Kaneko, & Fuchs, 1992; Seung, 1996; Askay, Gamkrelidze,
Seung, Baker, & Tank, 2001). It is interesting to note that the terms line attrac-
tor and neural integrator actually describe different aspects of the network. In
particular, the network is called an integrator because the low-dimensional
variable (e.g., horizontal eye position) x(t) describing the network’s output
reflects the integration of the input signal (e.g., eye movement velocity) u(t)
to the system. In contrast, the network is called a line attractor because in



Controlling Spiking Attractor Networks 1283

u(t)

x(t)

A

B

bk(t) aj(t)

Figure 2: Line attractor network architecture. The underline denotes variables
that are part of the neuron-level description. The remaining variables are part
of the higher-level description.

the high-dimensional activity space of the network (where the dimension
is equal to the number of neurons in the network), the organization of the
system collapses network activity to lie on a one-dimensional subspace (i.e.,
a line). As a result, only input that moves the network along this line changes
the network’s output.

In a sense, then, these two terms reflect a difference between what can
be called higher-level and neuron-level descriptions of the system (see
Figure 2). As modelers of the system, we need a method that allows us
to integrate these two descriptions. Adopting the principles outlined ear-
lier does precisely this. Notably, the resulting derivation is simple and is
similar to that presented in Eliasmith and Anderson (2003). However, all of
the steps needed to generate the far more complex circuits discussed later
are described here, so it is useful as an introduction (and referred to for some
of the subsequent derivations).

We can begin by describing the higher-level behavior as integration,
which has the state equation

ẋ = Ax(t) + Bu(t) (3.1)

x(s) = 1
s

[Ax(s) + Bu(s)] , (3.2)

where A = 0 and B = 1. Given principle 3, we can determine A′ and B ′,
which are needed to implement this behavior in a system with neural dy-
namics defined by h′(t) (see equation 2.6). The result is

B ′ = τ

A′ = 1,



1284 C. Eliasmith

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

x

F
iri

ng
 R

at
e 

(H
z)

Figure 3: Sample tuning curves for a population of neurons used to implement
the line attractor. These are the equivalent steady-state tuning curves of the
spiking neurons used in this example. They are found by solving the differential
equations for the leaky integrate-and-fire neuron assuming a constant input
current and are described by a j (x) = 1

τ
ref
j −τRC

j ln
(

1− Jthreshold
a j x+J bias

) .

where τ is the time constant of the PSC of neurons in the population repre-
senting x(t).

To use this description in a neural model, we must define the representa-
tion of the state variable of the system, x(t). Given principle 1, let us define
this representation using the following encoding and decoding:

a j (t) = G j
[
α j 〈x(t)φ̃ j 〉 + J bias

j

]
(3.3)

and

x̂(t) =
∑

j

a j (t)φx
j . (3.4)

Note that the encoding weight φ̃ j plays the same role as the encoding vector
in equation 2.2 but is simply ±1 (for on and off neurons) in the scalar case.
Figure 3 shows a population of neurons with this kind of encoding. Let us
also assume an analogous representation for u(t).

Working in the time domain, we can take our description of the dynamics,

x(t) = h′(t) ∗ [
A′x(t) + B ′u(t)

]
,



Controlling Spiking Attractor Networks 1285

and substitute it into equation 3.3 to give

a j (t) = G j
[
α j 〈φ̃ j h′(t) ∗ [A′x(t) + B ′u(t)]〉 + J bias

j

]
. (3.5)

Substituting our decoding equation 3.4 into 3.5 for both populations gives

a j (t) = G j

[
α j

〈
h′(t) ∗ φ̃ j

[
A′ ∑

i

ai (t)φx
i + B ′ ∑

k

bk(t)φu
k

]〉
+ J bias

j

]

(3.6)

= G j

[
h′(t) ∗

[∑
i

ω j i ai (t) +
∑

k

ω jkbk(t)

]
+ J bias

j

]
, (3.7)

where ω j i = α j A′φx
i φ̃ j andω jk = α j B ′φu

k φ̃ j are the recurrent and input con-
nection weights, respectively. Note that i is used to index population activity
at the previous time step,1 and Gi is a spiking nonlinearity. It is important
to keep in mind that the temporal filtering is done only once, despite this
notation. That is, h′(t) is the same filter as that defining the decoding of both
x(t) and u(t). More precisely, this equation should be written as

∑
n

δ j (t − tn) = G j

[∑
i,n

ω j i h′
i (t) ∗ δi (t − tn) + . . . (3.8)

∑
k,n

ω jkh′
k(t) ∗ δk(t − tn) + J bias

j

]
. (3.9)

The dynamics of this system when h′
i (t) = h′

k(t) are as written in
equation 3.5, which is the case of most interest as it best approximates a true
integrator. Nevertheless, they do not have to be equal and model a broader
class of dynamics when this is included in the higher-level analysis.

For completeness, we can write the subthreshold dynamical equations
for an individual LIF neuron voltage Vj (t) in this population as follows:

dVj

dt
= − 1

τRC
j

(
Vj − Rj

[∑
i,n

ω j i h′
i (t) ∗ δi (t − tn) + . . . (3.10)

∑
k,n

ω jkh′
k(t) ∗ δk(t − tn) + J bias

j

])
, (3.11)

1 In fact, there are no discrete time steps since this is a continuous system. However,
the PSC effectively acts as a time step, as it determines the length of time that previous
information is available.



1286 C. Eliasmith

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

0

1

u(
t)

A)

B)

Time (s)

0

10

20

30

40

50

60

70

N
eu

ro
n

Time (s)

C)

x(
t)

-1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: (A) The decoded input u(t), (B) the decoded integration x(t) of a spik-
ing line attractor with 200 neurons under 10% noise, and (C) spike rasters of a
third of the neurons in the population.

where τRC
j = Rj C j , Rj is the membrane resistance, and C j the membrane

capacitance. As usual, the spikes are determined by choosing a threshold
voltage for the LIF neuron (Vth) and placing a spike when Vj > Vth . In our
models, we also include a refractory time constant τ

ref
j , which captures the

absolute refractory period observed in real neurons. Figure 4 shows a brief
sample run for this network.

To gain insight into the network’s function as both an attractor and an
integrator, it is important to derive measures of the network’s behavior. This
has already been done to some extent for line attractors, so I will not discuss
such measures here (Seung et al., 2000; Eliasmith & Anderson, 2003). What
these analyses make clear, however, is how higher-level properties, such as
the effective time constant of the network, are related to neuron-level prop-
erties, such as membrane and synaptic time constants. Because the previous
derivation is part of a general method for building more complex attractor
networks (as I discuss next), it becomes evident how these same analyses
can apply in the more complex cases. This is a significant benefit of generat-
ing models with a set of unified principles. More important from a practical
standpoint, constructing this network by employing control theory makes
it evident how to control some of the high-level properties, such as the effec-
tive network time constant (see section 4). It is this kind of control that begins
to make clear how important such simple networks are for understanding
neural signal processing.

3.2 Plane Attractor. Perhaps the most obvious generalization of a line
attractor is to a plane attractor, that is, from a one-dimensional to a multidi-
mensional attractor. In this section, I perform this generalization. However,
to demonstrate the representational generality of the NEF, I consider plane



Controlling Spiking Attractor Networks 1287

attractors in the context of function representation (rather than vector repre-
sentation). This has the further benefit of demonstrating how the ubiquitous
bump attractor networks relate to the methods described here.

Networks that have sustained gaussian-like bumps of activity have been
posited in various neural systems, including frontal working memory areas
(Laing & Chow, 2001; Brody et al., 2003), the head direction system (Zhang,
1996; Redish, 1999), visual feature selection areas (Hansel & Sompolinsky,
1998), arm control systems (Snyder, Batista, & Andersen, 1997), and the path
integration system (Conklin & Eliasmith, 2005). The prevalence of this kind
of attractor suggests that it is important to account for such networks in a
general framework. However, it is not immediately obvious how the stable
representation of functions relates to either vector or scalar representation
as I have so far described it.

Theoretically, continuous function representation demands an infinite
number of degrees of freedom. Neural systems, of course, are finite. As a
result, it is natural to assume that understanding function representation
in neural systems can be done using a finite basis for the function space
accessible by that system. Given a finite basis, the finite set of coefficients of
such a basis determines the function being represented by the system at any
time. As a result, function representation can be treated as the representation
of a vector of coefficients over some basis, that is,

x(ν; A) =
M∑

m=1

xm�m(ν), (3.12)

where ν is the dimension the function is defined over (e.g., spatial position),
x is the vector of M coefficients xm, and �m are the set of M orthonormal
basis functions needed to define the function space. Notably, this basis does
not need to be accessible in any way by the neural system itself; it is merely a
way for us to conveniently write the function space that can be represented
by the system.

The neural representation depends on an overcomplete representation
of this same space, where the overcomplete basis is defined by the tuning
curves of the relevant neurons. More specifically, we can define the encoding
of a function space analogous to that for a vector space by writing

ai (x(ν; x)) = ai (x) = Gi
[
αi 〈x(ν; x)φ̃i (ν)〉ν + J bias

i

]
. (3.13)

Here, the encoded function x(ν; x) (e.g., a gaussian-like bump) and the en-
coding function φ̃i (ν), which is inferred from the tuning curve, determine
the activity of the neuron. Because of the integration over ν in this encoding,
it is only changes in the coefficients x that affect neural firing, again making



1288 C. Eliasmith

it clear that we can treat neural activity as encoding a vector of coefficients.
The decoding for function representation is, as expected,

x̂(ν; x) =
∑

i

ai (x)φi (ν), (3.14)

where the decoders φi (ν) can be determined like the vector decoders dis-
cussed earlier.

Having defined the function representation in this way, we are in a po-
sition to explicitly relate it to an equivalent vector representation. This is
important because it allows us to use the control-theoretic techniques dis-
cussed in section 2.3 to define the dynamics of the representation. Let us
begin by writing the decoders φi (ν) using the orthonormal basis that de-
fines the function space x(ν; x),

φi (ν) =
M∑
m

qim�m(ν),

where qim are elements of the matrix of coefficients defining each of the i
encoding functions with respect to the basis �m(ν). This ensures that the
representation of a given function will not lie outside the original func-
tion space. Similarly, the encoding functions φ̃i (ν) should encode functions
x(ν; x) only in such a way that they can be decoded by these decoders, so
we may assume

φ̃i (ν) =
M∑
m

q̃im�m(ν). (3.15)

Together, these definitions determine the equivalent of the function rep-
resentation in a vector space. In particular, the encoding is given by

ai (x) = Gi

[
αi

〈∑
n,m

xm�m(ν)q̃in�n(ν)

〉
ν

+ J bias
i

]

= Gi

[
αi

(∑
n,m

xmq̃inδnm

)
+ J bias

i

]

= Gi

[
αi

(∑
m

xmq̃im

)
+ J bias

i

]

= Gi
[
αi 〈xq̃i 〉m + J bias

i

]
,



Controlling Spiking Attractor Networks 1289

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

ν

Φ
(ν

)

Φ1
Φ2
Φ3
Φ4
Φ5

-3 -2 -1 0 1 2 3
-0.1

0

0.1

ν

Φ1
Φ2
Φ3
Φ
Φ

4

5

A) B)

Φ
(ν

)

Figure 5: The orthonormal bases for the representational spaces for (A) the ring
attractor in the head direction system and (B) LIP working memory. Note that
the former is cyclic and the latter is not.

and the decoding is given by

x̂ =
∑

i

ai (x)qi .

Essentially, these equations simply convert the encoding and decoding func-
tions into their equivalent encoding and decoding vectors in the function
space whose dimensions are determined by �m. Our description of a neural
system in this space will have all the same properties as it did in the original
function space. The advantage, as already mentioned, is that control theory
is more easily applied to finite vector spaces. When we introduce control in
section 4, we demonstrate this advantage in more detail.

To see the utility of this formulation, let us consider two different neural
systems in parallel: working memory in lateral intraparietal (LIP) cortex
and the ring attractor in the head direction system.2 These can be considered
in parallel because the dominant dynamics in both systems are the same.
That is, just like the integrator, LIP working memory and the ring attractor
maintain a constant value with no input: ẋ = 0.

The difference between these systems is that LIP working memory is
sometimes taken to have a bounded domain of representation (e.g., between
±60 degrees from midline), whereas the ring attractor has a cyclic domain
of representation. Given equation 3.12, this difference will show up as a
difference in the orthonormal basis �(ν) that spans the representational
space. Figure 5 shows this difference.

2 The first of these is considered in Eliasmith & Anderson (2003), although without the
integration of the data as described here.



1290 C. Eliasmith

A) B)

Figure 6: Samples of the (A) encoding functions and (B) resultant tuning curves
for LIP neurons based on the data provided in Platt and Glimcher (1998).

In fact, these orthonormal basis functions can be inferred from the neural
data. To do so, we first need to construct the neural encoding functions φ̃i (ν)
by looking at the experimentally determined tuning curves of the neurons.
That is, we can generate a population of neurons with tuning curves that
have the same distribution of widths and heights as observed in the system
we are modeling and then use the encoding functions necessary for gen-
erating that population as an overcomplete basis for the representational
space. We can then determine, using singular value decomposition, the
orthonormal basis that spans that same space and use it as our orthonor-
mal basis, �(ν). For example, using data from Platt and Glimcher (1998),
we have applied this method to get the tuning curves shown in Figure 6A,
the encoders shown in Figure 6B, and thus arrive at the orthonormal basis
shown in Figure 5B for LIP representation.

Given an orthonormal basis, we now need to determine which set of
coefficients x on that basis is relevant for the neural system of interest. The
standard representations in both LIP working memory and the ring attractor
are generally characterized as gaussian-like bumps, at any position. How-
ever, in LIP, there is evidence that this bump can be further parameterized
by nonpositional dimensions (Sereno & Maunsell, 1998). This kind of para-
metric working memory has also been found in frontal systems (Romo,
Brody, Hernández, & Lemus, 1999). So the representation in LIP will be
gaussian-like bumps, but of varying heights.

Ideally, we need to specify some probability density ρ(x) on the coeffi-
cients that appropriately picks out just the gaussian-like functions centered
at every value of ν (and those of various heights for the LIP model). This es-
sentially specifies the range of functions that are permissible in our function
space. It is clearly undesirable to have all functions that can be represented
by the orthonormal basis as candidate representations. Given ρ(x), we can



Controlling Spiking Attractor Networks 1291

π

ν
-π-101

0

0.5

1

ν
0

10005001

0

0.5

1
10005001

Neuron Neuron

T
im

e (s)
T

im
e (s)

A) B )

Figure 7: Simulation results for (A) LIP working memory encoding two differ-
ent bump heights at two locations and (B) a head direction ring attractor. The
top graph shows the decoded function representation and the bottom graph the
activity of the neurons in the population. (The activity plots are calculated from
spiking data using a 20 ms time window with background activity removed and
are smoothed by a 50-point moving average.) Both models use 1000 spiking LIF
neurons with 10% noise added.

use the methods described in the appendix to find the decoders. In particu-
lar, the average over x in equation A.2 is replaced by an average over ρ(x).
In practice, it can be difficult to compactly define ρ(x), so it is often con-
venient to use a Monte Carlo method for approximating this distribution
when performing the average, which we have done for these examples.

Having fully defined the representational space for the system, we can
apply the methods described earlier for the line attractor to generate a
fully recurrent spiking model of these systems. The resulting behaviors of
these two models are shown in Figure 7. Note that although it is natural to
interpret the behavior of this network as a function attractor (as demon-
strated by the activity of the population of neurons), the model can also be
understood as implementing a (hyper-)plane attractor in the x vector space.

Being able to understand the models of two different neural systems with
one approach can be very useful. This is because we can transfer analyses



1292 C. Eliasmith

of one model to the other with minimal effort. As well, it highlights possi-
ble basic principles of neural organization (in this case integration). These
observations provide a first hint that the NEF stands to unify diverse de-
scriptions of neural systems and help identify general principles underlying
the dynamics and representations in those systems.

3.3 Cyclic Attractor. The kinds of attractors presented to this point are,
in a sense, static because once the system has settled to a stable point, it
will remain there unless perturbed. However, there is another broad class
of attractors with dynamic, periodic stability. In such cases, settling into the
attractor results in a cyclic progression through a closed set of points. The
simplest example of this kind of attractor is the ideal oscillator.

Because cyclic attractors are used to describe oscillators and many neu-
ral systems seem to include oscillatory behavior, it is natural to use cyclic
attractors to describe oscillatory behavior in neural systems. Such behav-
ior may include any repetitive motion, such as walking, swimming, flying,
or chewing. The natural mapping between oscillators and repetitive be-
havior is at the heart of most work on central pattern generators (CPGs;
Selverston, 1980; Kopell & Ermentrout, 1998). However, this work typically
characterizes oscillators as interactions between only a few neighboring
neurons. In contrast, the NEF can help us in understanding cyclic attractors
at the network level. Comparing the results of an NEF characterization with
that of the standard approach to CPGs shows that there are advantages to
the higher-level NEF characterization. To effect this comparison, let us ex-
tend a previously described model of lamprey swimming (for more details
on the mechanical model, see Eliasmith & Anderson 2000, 2003).3 Later, we
extend this model by introducing control.

When the lamprey swims, the resulting motion resembles a standing
wave of one period over the lamprey’s length. The tensions T in the muscles
needed to give rise to this motion can be described by

T(z, t) = κ(sin(ωt − kz) − sin(ωt)), (3.16)

where κ = γ ηωA
k , k = 2π

L , A = 1 is the wave amplitude, η = 1 is the normal-
ized viscosity coefficient, γ = 1 is the ratio of intersegmental and vertebrae
length, L = 1 is the length of the lamprey, and ω is the swimming frequency.

As for the LIP model, we can define an orthogonal representation of
the dynamic pattern of tensions in terms of the coefficients xn(t) and the

3 Unlike the previous model, this one includes noisy spiking neurons. Parameters for
these neurons and their distribution are based on data in el Manira, Tegner, & Grillner
(1994). This effectively demonstrates that the bursting observed in lamprey spinal cord is
observed in the model as well.



Controlling Spiking Attractor Networks 1293

harmonic functions �n(z):

T̂(z, t; x) = κ

(
x0 +

N∑
n=1

x2n−1(t) sin(2πnz) + x2n(t) cos(2πnz)

)
.

The appropriate x coefficients are found by setting the mean square
error between T̂(z, t; x) and T(z, t) to be zero. Doing so, we find that
x0(t) = − sin(ωt), x1(t) = − cos(ωt), x2(t) = sin(ωt), and for n > 2, xn(t) = 0.
This defines the representation in a higher-level function space, whose
dynamics we can implement by describing the dynamics of the coeffi-
cients, x.

In this case, it is evident that the coefficients x0 and x1 implement a
standard oscillator. The coefficient x2 is an additional counterphase sine
wave. This additional term simply tilts the two-dimensional cyclic attractor
in phase space, so we essentially have just a standard oscillator. We can
write the control equations as usual,

ẋ = Ax,

where

A =




0 ω 0
−ω 0 0
0 −ω 0


 (3.17)

for some frequency ω.
Before we embed this control description into a neural population, it

makes sense to take into account the known anatomical structure of the
system we are describing. In the case of the lamprey, we know that the
representation of the tension T is spread down the length of the animal in
a series of 100 or so segments (Grillner, Wallén, Brodin, & Lansner, 1991).
As a result, we can define a representation that is intermediate between a
neural representation and the orthogonal representation that captures this
structure. In particular, let us define an overcomplete representation along
the length z with gaussian-like encoding functions. The encoding into this
intermediate representation is thus

b j (t) = 〈φ̃ j (z)T(z, t)〉z,

and the decoding is

T̂(z, t) =
∑

j

b j (t)φ j (z).



1294 C. Eliasmith

This representation is not essential, but has one very useful property:
it allows us to simulate some parts of the model at the neural level and
other parts at this intermediate level, resulting in significant computational
savings while selectively simplifying the model. Of course, to use this rep-
resentation, we need to associate the intermediate representation to both
the neural and orthogonal representations. The relation to the neural rep-
resentation is defined by the standard neural representation described in
section 2.2, with the encoding given by

δ j (t − tin) = Gi
[
αi 〈b j φ̃i 〉 + J bias

i

]
and the decoding by

b̂ j =
∑
i,n

hij(t − tn)φi .

Essentially, these equations describe how the intermediate population
activity b j is related to the actual neurons, indexed by i , in the various
populations along the length of the lamprey.4

To relate the intermediate and orthogonal spaces, we can use the projec-
tion operator � = [φ̃�]. That is, we can project the control description into
the intermediate space as follows:

ẋ = Ax

��−1ḃ = �A�−1b

ḃ = Abb,

where Ab = �A�−1.
Having provided these descriptions, we can now selectively convert

segments of the intermediate representation into spiking neurons to see
how single cells perform in the context of the whole, dynamic spinal cord.
Figure 8A shows single cells that burst during swimming, and Figure 8B
shows the average spike rate of an entire population of neurons in a seg-
ment. Given this characterization of neural representation, these graphs
reflect different levels of description of the neural activity during the same
simulation.

It should be clear that this model does not adopt the standard CPG ap-
proach to modeling this system. As a result, the question arises as to whether

4Because the lamprey spinal cord is effectively continuous, assignment of neurons
to particular populations is somewhat arbitrary, although constrained by the part of the
lamprey over which they encode muscle tension. So the resulting model is similarly con-
tinuous.



Controlling Spiking Attractor Networks 1295

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5
 
 

0 0.5 1 1.5 2 2.50

5

10

15

20

 
 Right side

Left side
Right side
Left side

A) B)

F
iri

ng
 R

at
e 

(H
z)

Time(s)

N
eu

ro
n

Time(s)

Figure 8: Results from the lamprey modeled as a cyclic attractor. The middle
segment of the lamprey was modeled at the single cell level by a population of
200 neurons under 10% noise. (A) The spikes from 20 (10 left, 10 right) single cells
in the population. (B) The average rate in the two (left and right) subpopulations.

the results of this simulation match the known neuroanatomy as well as the
CPG approach. While there is much that remains unknown about the lam-
prey, these three constraints on the anatomy are well established:

1. Connectivity is mostly local but spans several segments.

2. Connectivity is asymmetric.

3. Individual neurons code muscle tension over small regions.

By introducing the intermediate level of representation, we have enforced
the third constraint explicitly. Looking at the intermediate-level weight ma-
trix for this system shown in Figure 9, we can see that constraint 2 clearly
holds and that constraint 1 is approximately satisfied.

The NEF can be used to embed high-level descriptions of cyclic attrac-
tors into biologically plausible networks that are consistent with the relevant
anatomical constraints. Undoubtedly, different systems will impose differ-
ent anatomical constraints, but the NEF methods are clearly not determined
by the particular constraints found in the lamprey.

Equally important, as discussed in section 4, because the NEF allows the
integration of control into the high-level description, it is straightforward to
characterize (and enforce) essential high-level properties like stability and
controllability in the generated models. This has often proved a daunting
task for the standard bottom-up CPG approach (Marder, Kopell, & Sigvardt,
1997). So, again, it is the ease with which this model can be extended to
account for important but complex behaviors that demonstrates the utility
of the NEF.



1296 C. Eliasmith

Neuron

N
eu

ro
n

0 20 40 60 80 100
0

20

40

60

80

100

Figure 9: The connectivity matrix between segments in the lamprey model.
Connectivity is asymmetric and mostly local, in agreement with the known
anatomy. The darker the image, the stronger the weights. Zero weights are the
large gray-hatched areas.

3.4 Chaotic Attractor. The final class of attractors considered are also
dynamic attractors, but they, unlike the cyclic attractors, are not periodic.
Instead, any nearby trajectories in chaotic (or strange) attractors diverge
exponentially over time. Nevertheless, they are attractors in that there is a
bounded subspace of the state space toward which trajectories, regardless
of initial conditions, tend over time.

In the context of neurobiological systems, there have been some sug-
gestions that chaos or chaotic attractors can be useful for describing certain
neural systems (Matsugu, Duffin, & Poon, 1998; Kelso & Fuchs, 1995; Skarda
& Freeman, 1987). For example, Skarda & Freeman (1987) suggest that the
olfactory bulb, before odor recognition, rests in a chaotic state. The fact that
the state is chaotic rather than merely noisy permits more rapid convergence
to limit cycles that aid in the recognition of odors. These kinds of information
processing effects themselves are well documented. For instance, a number
of practical control problems can be more efficiently solved if a system can
exploit chaotic attractors effectively (Bradley, 1995). However, the existence
of chaos in neural systems is subject to much debate (Lai, Harrison, Frei, &
Osorio, 2003; Biswal & Dasgupta, 2002).



Controlling Spiking Attractor Networks 1297

As a result, we consider chaotic attractors here largely for the purposes
of completeness, that is, to show that this approach is general enough to
capture such phenomena, should they exist. For this example, we have
chosen to use the familiar Lorenz attractor, described by:




ẋ1

ẋ2

ẋ3


 =




−a a 0
b −1 x1

x2 0 −c







x1

x2

x3


 . (3.18)

If a = 10, b = 28, and c = 8/3 this system of equations gives the well-
known butterfly chaotic attractor. It is clear from this set of equations that
the system to be considered is nonlinear. So, unlike the previous examples,
we need to compute nonlinear functions of the state variables, meaning this
is not an LTI system. As discussed in more detail in section 4.1, there are
various possible architectures for computing the necessary transformations.

Here, we compute the necessary cross-terms by extracting them directly
from the population representing the vector space x. Specifically, we can find
decoding vectors for x1x3 (i.e., φx1x3 ) and x1x2 (i.e., φx1x2 ) using the method
discussed in the appendix where, for example, f (x) = x1x3. These decoding
vectors can be used to provide an expression for the recurrent updating of
the population’s firing rate,

ai (x) = Gi
[
αi 〈φ̃i l(x)〉 + J bias

i

]
, (3.19)

where the vector function l(x) is defined by the Lorenz equations in equa-
tion 3.18. Substituting the appropriate neural-level characterizations of this
transformation into equation 3.19 gives

ai (x) = Gi

[∑
j

(
ω

ax1
ij − ω

ax2
ij + ω

bx1
ij − ω

x2
ij

− ω
x1x3
ij + ω

x1x2
ij − ω

cx3
ij

)
a j (x) + J bias

i

]
,

where ω
ax1
ij = αi φ̃i,1aφ

x1
j , ω

ax2
ij = αi φ̃i,1aφ

x1
j ω

bx1
ij = αi φ̃i,2bφ

x1
j , ω

x2
ij = αi φ̃i,2φ

x2
j ,

ω
x1x3
ij = αi φ̃i,2φ

x1x3
j , ω

x1x2
ij = αi φ̃i,3φ

x1x2
j , and ω

cx3
ij = αi φ̃i,3cφx3

j . As usual, the
connection weights are found by combining the encoding and decoding
vectors as appropriate. Note that despite implementing a higher-level non-
linear system, there are no multiplications between neural activities in the
neural-level description. This demonstrates that the neural nonlinearities
alone result in the nonlinear behavior of the network. That is, no additional
nonlinearities (e.g., dendritic nonlinearities) are needed to give rise to this
behavior.



1298 C. Eliasmith

0 0. 5 1 1. 5 2 2. 5 3 3. 5 4 4. 5 5

-4 0

-3 0

-2 0

-1 0

0

10

20

30

40

50
x
y
z

0 0. 1 0. 2 0. 3 0. 4 0.5 0. 6 0. 7 0. 8 0. 9 1
0

2

4

6

8

10

12

14

16

18

20

-2 0 -1 5 -10 -5 0 5 10 15 20 25

0

5

10

15

20

25

30

35

40

45

50

z

x

A)

B)

A
m

pl
itu

de
N

eu
ro

n

Time(s)

Time(s)

C)

Figure 10: The Lorenz attractor implemented in a spiking network of 2000 LIF
neurons under 10% noise. (A) The decoded output from the three dimensions.
(B) Spike trains from 20 sample neurons in the population for the first second of
the run display irregular firing. (C) Typical Lorenz attractor-type motions (i.e.,
the butterfly shape) are verified by plotting the state space. For clarity, only the
last 4.5 s are plotted, removing the start-up transients.

Running this simulation in a spiking network of 2000 LIF neurons under
noise gives the results shown in Figure 10. Because this is a simulation of
a chaotic network under noise, it is essential to demonstrate that a chaotic
system is in fact being implemented, and the results are not just noisy spik-
ing from neurons. Applying the noise titration method (Poon & Barahona,
2001) on the decoded spikes verifies the presence of chaos in the system
(p-value < 10−15 with a noise limit of 54%, where the noise limit indicates
how much more noise could be added before the nonlinearity was no longer



Controlling Spiking Attractor Networks 1299

detectable). Notably, the noise titration method is much better at detecting
chaos in time series than most other methods, even in highly noisy contexts.
As a result, we can be confident that the simulated system is implement-
ing a chaotic attractor as expected. This can also be qualitatively verified
by plotting the state space of the decoded network activity, which clearly
preserves the butterfly look of the Lorenz attractor (see Figure 10C).

4 Controlling Attractor Networks

To this point we have demonstrated how three main classes of attractor
networks can be embedded into neurobiologically plausible systems and
have indicated, in each case, which specific systems might be well modeled
by these various kinds of attractors. However, in each case, we have not
demonstrated how a neural system could use this kind of structure effec-
tively. Merely having an attractor network in a system is not itself necessarily
useful unless the computational properties of the attractor can be taken ad-
vantage of. Taking advantage of an attractor can be done by moving the
network either into or out of an attractor, moving between various attrac-
tor basins, or destroying and creating attractors within the network’s state
space. Performing these actions means controlling the attractor network in
some way. Some of these behaviors can be effected by simply changing the
input to the network. But more generally, we must be able to control the
parameters defining the attractor properties.

In what follows, we focus on this second, more powerful kind of control.
Specifically, we revisit examples from each of the three classes of attractor
networks and show how control can be integrated into these models. For
the neural integrator we show how it can be turned into a more general
circuit that acts as a controllable filter. For the ring attractor, we demon-
strate how to build a nonlinear control model that moves the current head
direction estimate given a vestibular control signal and does not rely on
multiplicative interactions at the neural level. In the case of the cyclic at-
tractor, we construct a control system that permits variations in the speed
of the orbit. And finally, in the case of the chaotic attractor, we demonstrate
how to build a system that can be moved between chaotic, cyclic, and point
attractor regimes.

4.1 The Neural Integrator as a Controllable Filter. As described in
section 3.1, a line attractor is implemented in the neural integrator in virtue
of the dynamics matrix A′ being set to 1. While the particular output value
of the attractor depends on the input, the dynamics of the attractor are con-
trolled by A′. Hence, it is natural to inquire as to what happens as A′ varies
over time. Since A′ is unity feedback, it is fairly obvious what the answer to
this question is: as A′ goes over 1, the resulting positive feedback will cause
the circuit to saturate; as A′ becomes less than one, the circuit begins to act
as a low-pass filter, with the cutoff frequency determined by the precise



1300 C. Eliasmith

u(t)

x(t)

B'x

A'(t)

c(t)

u(t)

x(t)

A'x

B'x

A'(t)

B'c

A) B)

Figure 11: Two possible network architectures for implementing the control-
lable filter. The B variables modify the inputs to the populations representing
their subscripted variable. The A variables modify the relevant recurrent con-
nections. The architecture in A is considered in Eliasmith and Anderson (2003);
the more efficient architecture in B is considered here.

value of A′. Thus, we can build a tunable filter by using the same circuit and
allowing direct control over A′.

To do so, we can introduce another population of neurons dl that encode
the value of A′(t). Because A′ is no longer static, the product A′x must be
constantly recomputed. This means that our network must support multi-
plication at the higher level. The two most obvious architectures for building
this computation into the network are shown in Figure 11. Both architectures
are implementations of the same high-level dynamics equation,

x(t) = h′(t) ∗ (A′(t)x(t) + τu(t)), (4.1)

which is no longer LTI, as it is clearly a time-varying system. Notably, while
both architectures demand multiplication at the higher level, this does not
mean that there needs to be multiplication between activities at the neu-
ral level. This is because, as mentioned in section 2.2 and demonstrated in
section 3.4, nonlinear functions can be determined using only linear decod-
ing weights.

As described in Eliasmith and Anderson (2003), the first architecture can
be implemented by constructing an intermediate representation of the vec-
tor c = [A′, x] from which the product is extracted using linear decoding.
The result is then used as the recurrent input to the ai population represent-
ing x. This circuit is successful, but performance is improved by adopting
the second architecture.

In the second architecture, the representation in ai population is taken
to be a 2D representation of x in which the first element is the integrated
input and the second element is A′. The product is extracted directly from



Controlling Spiking Attractor Networks 1301

this representation using linear decoding and then used as feedback. This
has the advantage over the first architecture of not introducing extra delays
and noise.

Specifically, let x = [x1, x2] (where x1 = x and x2 = A′ in equation 4.1).
A more accurate description of the higher-level dynamics equation for this
system is

ẋ = h′(t) ∗ (
A′x + B′u

)
[

ẋ1

x2

]
= h′(t) ∗

([
x2 0
0 0

] [
x1

x2

]
+

[
τ 0
0 τ

] [
u
A′

])
, (4.2)

which makes the nonlinear nature of this implementation explicit. Notably,
here the desired A′ is provided as input from a preceding population, as is
the signal to be integrated, u. To implement this system, we need to compute
the transformation,

p̂(t) =
∑

i

ai (t)φ
p
i ,

where p(t) is the product of the elements of x. Substituting this transforma-
tion into equation 3.6 gives

a j = G j

[
α j

〈
h′ ∗ φ̃ j

[∑
i

ai (t)φ
p
i + B ′ ∑

k

bkφ
u
k

]〉
+ J bias

j

]

= G j

[∑
i

ωijai (t) +
∑

k

ωk j bk(t) + J bias
j

]
, (4.3)

where ωij = α j φ̃ jφ
p
i , ωk j = α j φ̃ j B ′φu

k and

ai (t) = h′ ∗ Gi
[
αi 〈x(t)φ̃i 〉 + J bias

i

]
.

The results of simulating this nonlinear control system are shown in
Figure 12. This run demonstrates a number of features of the network. In
the first tenth of a second, the control signal 1 − A′ is nonzero, helping to
eliminate any drift in the network for zero input. The control signal then
goes to zero, turning the network into a standard integrator over the next
two-tenths of a second, when a step input is provided to the network. The
control signal is then increased to .3, rapidly forcing the integrated signal
to zero. The next step input is filtered by a low-pass filter, since the control
signal is again nonzero. The third step input is also integrated, as the control
signal is zero. Like the first input, this input is forced to zero by increasing
the control signal, but this time the decay is much slower because the control



1302 C. Eliasmith

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

C
on

tr
ol

le
d 

Fi
lte

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5

In
pu

t

u(t)
1-A'(t)

x
1
(t)

x
2
(t)

A)

B)

Figure 12: The results of simulating the second architecture for a controllable
filter in a spiking network of 2000 neurons under 10% noise. (A) Input signals
to the network. (B) High-level decoded response of the spiking neural network.
The network encodes both the integrated result and the control signal directly,
to efficiently support the necessary nonlinearity. See the text for a description of
the behavior.

signal is lower (.1). These behaviors show how the control signal can be used
as a reset signal (by simply making it nonzero) or as a means of determining
the properties of a tunable low-pass filter.

The introduction of control into the system gave us a means of radically
altering the attractive properties of the system. It is only while A′ = 1 that
we have an approximate line attractor. For positive values less than one,
the system no longer acts as a line attractor, but rather as a point attractor,
whose basin properties (e.g., steepness) vary as the control signal.

As can be seen in equation 4.3, there is no multiplication of neural ac-
tivities. There is, of course, significant debate about whether, and to what
extent, dendritic nonlinearities might be able to support multiplication of
neural activity (see, e.g., Koch & Poggio, 1992; Mel 1994, 1999; Salinas &
Abbott, 1996; von der Heydt, Peterhans, & Dursteler, 1991). As a result,
it is useful to demonstrate that it is possible to generate circuits without



Controlling Spiking Attractor Networks 1303

multiplication of neural activities that support network-level nonlinearities.
If dendritic nonlinearities are discovered in the relevant systems, these net-
works would become much simpler (essentially we would not need to con-
struct the intermediate c population).

4.2 Controlling Bump Movement Around the Ring Attractor. Of the
two models presented in section 3.2, the role of control is most evident for
the head direction system. In order to be useful, this system must be able
to update its current estimate of the heading of the animal given vestibular
information about changes in the animal’s heading. In terms of the ring
attractor, this means that the system must be able to rotate the bump of
activity around the ring in various directions and at various speeds given
simple left-right angular velocity commands. (For a generalization of this
model to the control of a two-dimensional bump that very effectively char-
acterizes behavioral and single-cell data from path integration in subiculum
see Conklin & Eliasmith, 2005.)

To design a system that behaves in this way, we can first describe the
problem in the function space x(ν) for a velocity command δ/τ and then
write this in terms of the coefficients x in the orthonormal Fourier space:

x(ν; t + τ ) = x(ν + δ; t)

=
∑

m

xmeim(ν+δ)

=
∑

m

xmeimνeimδ.

Rotation of the bump can be effected by applying the matrix Em = eimδ ,
where δ determines the speed of rotation. Written for real-valued functions,
E becomes

E =




1 0 0 0
0 cos(mδ) sin(mδ) 0

0 − sin(mδ) cos(mδ)
...

0 0 · · · . . .


 .

To derive the dynamics matrix A for the state equation 2.5, it is im-
portant to note that E defines the new function at t + τ , not just the
change, δx. As well, we would like to control the speed of rotation,
so we can introduce a scalar on [−1, 1] that changes the velocity of



1304 C. Eliasmith

rotation, with δ defining the maximum velocity. Taking these into account
gives

A = C(t) (E − I) ,

where C(t) is the left-right velocity command.5

As in section 4.1, we can include the time-varying scalar variable C(t) in
the state vector x and perform the necessary multiplication by extracting
a nonlinear function that is the product of that element with the rest of
the state vector. Doing so again means there is no need to multiply neural
activities. Constructing a ring attractor without multiplication is a problem
that was only recently solved by Goodridge and Touretzky (2000). That
solution, however, is specific to a one-dimensional single bump attractor,
does not use spiking neurons, and does not include noise. As well, the
solution posits single left-right units that together project to every cell in the
population, necessitates the setting of normalization factors, and demands
numerical experiments to determine the appropriate value of a number of
the parameters. In sum, the solution is somewhat nonbiological and very
specific to the problem being addressed. In contrast, the solution we have
presented here is subject to none of these concerns: it is both biologically
plausible and very general. The behavior of the fully spiking version of this
model is shown in Figure 13.

In this case, the control parameters simply move the system through
the attractor’s phase space rather than altering the phase space itself as in
the previous example. However, to accomplish the same movement using
the input u(t), we would have to provide the appropriate high-dimensional
vector input (i.e., the new bump position minus the old bump position).
Using the velocity commands in this nonlinear control system, we need only
provide a scalar input to appropriately update the systems state variables.
In other words, the introduction of this kind of control greatly simplifies
updating the system’s current position in phase space.

5 There is more subtlety than one might think to this equation. For values of C(t) �= 1, the
system does not behave as one might expect. For negative values, two bumps are created:
one negative bump in the direction opposite the desired direction of motion and the other
at the current bump location. This results in the current bump being effectively pushed
away from the negative bump. For values less than one, a proportionally scaled bump is
created in the location as if C(t) = 1, and a proportionally scaled bump is subtracted from
the current position, resulting in proportionally scaled movement. There are two reasons
this works as expected. The first is that the movements are very small, so the resulting
bumps in all cases are approximately gaussian (though subtly bimodal). The second is
that the attractor dynamics built into the network clean-up any nongaussianity of the
resulting states. The result is a network that displays bumps moving in either direction
proportional to C(t), as desired.



Controlling Spiking Attractor Networks 1305

0

1

2

T
im

e (s)

π
ν-πLeft / Right

A) B)

Figure 13: The controlled ring attractor in a spiking network of 1000 neurons
with 10% noise. The left-right velocity control signal is shown on the left, and
the corresponding behavior of the bump is shown on the right.

4.3 Controlling the Speed of the Cyclic Attractor. As mentioned in
section 3.3, one advantage of our synthesis of top-down and bottom-
up data is that it permits the inclusion of strong top-down constraints
on model building. In the context of lamprey locomotion, introduc-
ing control over swimming speed and guaranteeing stable oscillation
to CPG-based models were problems that had to be tackled separately,
took much extra work, and resulted in solutions specific to this kind
of network (Marder et al., 1997). In contrast, stability, control, and
other top-down constraints can be included in the cyclic attractor model
directly.

In this example, we consider control over swimming speed. Given
the two previous examples, we know that this kind of control can be
characterized as the introduction of nonlinear or time-varying parame-
ters into our state equations. For instance, we can make the frequency
term ω in equation 3.17 a function of time. For simplicity, we will con-
sider the standard oscillator, although it is closely related to the swimming
model as discussed earlier (see Kuo & Eliasmith, 2004, for an anatomically
and physiologically plausible model of zebrafish swimming with speed
control).

To change the speed of an oscillator, we need to implement

ẋ =
[

0 ω(t)
−ω(t) 0

] [
x1

x2

]
+ Bu(t).



1306 C. Eliasmith

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

x1
x2
ω

Figure 14: The controlled oscillator in a spiking network of 800 neurons with
10% noise. The control signal varies ω, causing the oscillator to double its speed
and then slow down to the original speed.

For this example, we can construct a nonlinear model, but unlike equation
4.2, we do not have to increase the dimension of the state space. Instead,
we can increase the dimension of the input space, so the third dimension
carries the time-varying frequency signal, giving

ẋ =
[

0 u3(t)
−u3(t) 0

] [
x1

x2

]
+ Bu(t). (4.4)

As before, this can be translated into a neural dynamics matrix using
equation 2.7 and implemented in a neural population using the methods
analogous to those in section 4.1. In fact, the architecture used for the neu-
ral implementation is the same despite the alternate way of expressing the
control system in equation 4.4. That is, in order to perform the necessary
multiplication, the dimensionality of the space encoded by the popula-
tion is increased by one. In this case, the extra dimension is assigned to
the input vector rather than the state vector. It should not be surprising,
then, that we can successfully implement a controlled cyclic attractor (see
Figure 14).

In this example, control is used to vary a property of the attractor: the
period of the orbit. Because the previous two examples are static attractors,



Controlling Spiking Attractor Networks 1307

this kind of control does not apply to them. However, it should be clear
that this example adds nothing new theoretically. Nevertheless, it helps to
demonstrate that the methods introduced earlier apply broadly. Notably,
the introduction of this kind of control into a neural model of swimming
results in connectivity that matches the known anatomy (Kuo & Eliasmith,
2004) .

4.4 Moving Between Chaotic, Cyclic, and Point Attractors. Both
Skarda and Freeman (1987) and Kelso and Fuchs (1995) have suggested that
being in a chaotic attractor may help to improve the speed of response of a
neural system to various perturbations. In other words, they suggest that if
chaotic dynamics are to be useful to a neural system, it must be possible to
move into and out of the chaotic regime. Conveniently, the bifurcations and
attractor structures in the Lorenz equations, 3.18, are well characterized,
making them ideal for introducing the kind of control needed to enter and
exit the chaotic attractor.

For instance, changing the b parameter over the range [1, 300] causes
the system to exhibit point, chaotic, and cyclic attractors. Constructing a
neural control system with an architecture analogous to that of the controlled
integrator discussed earlier would allow us to move the system between
these kinds of states. However, an implementational difficulty arises. As
suggested by Figure 10, the mean of the x3 variable is roughly equal to b.
Thus, for largely varying values of b, the neural system will have to represent
a large range of values, necessitating a very wide dynamic range with a good
signal-to-noise ratio. This can be achieved with enough neurons, but it is
more efficient to rewrite the Lorenz equations to preserve the dynamics but
eliminate the scaling problem. To do so, we can simply subtract and add b
as appropriate to remove the scaling effect. This gives




ẋ1

ẋ2

ẋ3


 =

a (x2 − x1)
bx1 − x2 − x1(x3 + b)
x1x2 − c(x3 + b) − b

=




−a a 0
0 −1 −x1

x2 0 −c







x1

x2

x3


 +




0 0 0
0 0 0

−(c + 1) 0 0







b
0
0


 .

Given this characterization of the Lorenz system, it is evident that, con-
veniently, introduction of the controlled signal b no longer requires multi-
plication, making the problem simpler than the previous control examples.
Implementing these equations in a spiking neural population can be done
as in section 3.4.

The results of simulating this network under noise are shown in Figure 15.
After the start-up transient, the network displays chaotic behavior, as with



1308 C. Eliasmith

0 1 2 3 4 5 6 7 8 9 10
-50

0

50

100

Time (s)

x
y
z
Control

A
m

pl
itu

de

Figure 15: The controlled chaotic attractor in a spiking network of 1000 neurons
with 10% noise. The system clearly moves from the chaotic regime to an oscil-
latory one, and finally to a point attrator. Noise titration verifies this result (see
the text for discussion).

no control (see Figure 10). However, in this case, it is the value of the control
signal b(t) that forces the system to be in the chaotic regime. After 6 seconds,
the control signal changes, moving the system to a stable limit cycle. At 8
seconds, the control signal changes again, moving the system to a fixed-
point attractor. To verify that these different regimes are as described, data
from each of the regimes were titrated as before. The noise titration during
the chaotic regime verified the presence of the nonlinearity (p-value < 10−15;
noise limit 39%). During the limit cycle and the point attractor regimes, noise
titration did not detect any nonlinearity, as expected.

Interestingly, despite the highly nonlinear nature of the system itself, the
kind of control that might be useful for information processing turns out
to be quite simple. Unlike the previous examples, this one demonstrates
how nonmultiplicative control can be very powerful. It serves to move a
nonlinear system through very different attractor regimes, some linear and
some not. However, unlike previous examples, it is unclear how useful this
kind of network is for understanding neural systems better. Nevertheless,
it serves to illustrate the generality of the NEF for understanding a wide
variety of attractors and control systems in the context of constraints specific
to neural systems.



Controlling Spiking Attractor Networks 1309

5 Conclusion

We have presented several examples of biologically plausible attractor
networks that cover a wide variety of attractors. These examples em-
ploy a variety of representations, including scalars, vectors, and functions.
They also exemplify a variety of control systems, including linear, time
varying, and nonlinear. Some of the examples on their own are not particu-
larly novel. What is novel is demonstrating how they relate to more complex
(and novel) models. In other words, it is this wide diversity of examples that
shows that the NEF can help us systematize the functionality of neural sys-
tems. That is, despite differences in tuning curves, kinds of representation,
neural response properties, intrinsic dynamics, and so on, it is possible to
classify various networks as variations on themes of integration, filtering,
and oscillation, among others, all of which can be derived from simple, gen-
eral principles. Furthermore, characterizing high-level dynamics, and how
lower-level properties affect those dynamics, can provide a window into
the purpose of neural subsystems. Compiling this knowledge should aid in
more quickly understanding the likely functions of larger, more complex,
and less familiar systems.

This kind of systematization can be useful in a number of ways. For one,
it suggests that perhaps the kinds of networks described here can serve as
functional parts of larger networks—networks that we can construct using
these same methods. One example of this is presented in Eliasmith et al.
(2002), where an integrator is one of nine subnetworks used to estimate
the true translational velocity of an animal given the responses of semicir-
cular canals and otoliths to a variety of acceleration profiles. So while we
have used the NEF here to construct a specific class of networks, the same
methods are more broadly applicable.

A second benefit of systematization is that it supports the transfer of
knowledge and analyses regarding well-understood neural systems to
lesser understood ones. For instance, understanding a useful control struc-
ture for the ring attractor suggests a useful control structure for path in-
tegration, a lesser-studied and more complex neural system (Conklin &
Eliasmith, 2005). More generally, if we can see the close relation between
two high-level descriptions of different neural systems (e.g., working mem-
ory and the neural integrator, or path integration and the head direction
system), what we have learned about one may often be translated into im-
plications for the other. This can greatly speed up the development of novel
models and focus our attention on the important characteristics of new sys-
tems (be they similarities to, or differences from, other known systems).

Finally, by being able to provide the high-level characterizations of neural
systems on which such systematization depends, we can carefully introduce
new complexities into existing models. For instance, the recent surge of
interest in the observed dynamics of working memory (Romo et al., 1999;
Brody et al., 2003; Miller, Brody, & Romo, 2003) can be captured by simple



1310 C. Eliasmith

extensions of the models described earlier (Singh & Eliasmith, 2004). Again,
this can greatly aid the construction of novel models—models that may
be able to address more complicated phenomena than otherwise possible
(Eliasmith, 2004, presents a neuron-level model of a well-studied deductive
inference task—the Wason card selection task—with 14 subsystems.)

So while this discussion has focused on characterizing a class of networks
that is clearly important for understanding neural systems, the methods un-
derlying this approach have much broader application. They can help us
begin to better understand the general control and routing of information
through the brain in a way responsible to neural constraints. With contin-
uing improvement in experimental techniques for examining large-scale
networks, theoretical tools for understanding networks on the same scale
become essential. The examples provided here hint that the NEF may be a
useful attempt at beginning to develop such tools.

Appendix: Least-Squares Optimal Linea Decoders

Consider determining the optimal linear decoders φi in equation 2.3 under
noise (see also Salinas & Abbott, 1994 and Eliasmith & Anderson, 2003).
To include noise, we introduce the noise term ηi , which is drawn from a
gaussian, independent, identically distributed, zero mean distribution. The
noise is added to the neuron activity ai , resulting in a decoding of

x̂ =
N∑

i=1

(ai (x) + ηi ) φi . (A.1)

To find the least-squares-optimal φi , we construct and minimize the mean
square error, averaging over the expected noise and the vector x:

E = 1
2

〈[
x −

N∑
i=1

(ai (x) + ηi ) φi

]2〉
x,η

= 1
2

〈[
x −

(
N∑

i=1

ai (x)φi −
N∑

i=1

ηiφi

)]2〉
x,η

, (A.2)

where 〈·〉x indicates integration over the range of x. Because the noise is
independent on each neuron, the noise averages out except when i = j . So
the average of the ηiη j noise is equal to the variance σ 2 of the noise on the
neurons. Thus, the error with noise becomes

E = 1
2

〈[
x −

N∑
i=1

ai (x)φi

]2〉
x

+ 1
2
σ 2

N∑
i=1

φ2
i . (A.3)



Controlling Spiking Attractor Networks 1311

Taking the derivative of the error gives

δE
δφi

= −1
2

〈
2

[
x −

N∑
j

a j (x)φ j

]
ai (x)

〉
x

+ σ 2φ jδij

= − 〈ai (x)x〉x +
〈

N∑
j

ai (x)a j (x)φ j

〉
x

+ σ 2φ jδij. (A.4)

Setting the derivative to zero gives

〈ai (x)x〉x =
N∑
j

(〈
ai (x)a j (x)

〉
x + σ 2δij

)
φ j (A.5)

or, in matrix form,

ϒ = �φ.

The decoding vectors φi are given by

φ = �−1ϒ,

where

�ij =
〈
ai (x)a j (x)

〉
x + σ 2δij

ϒi = 〈xai (x)〉x .

Notice that the � matrix will be nonsingular because of the noise term on
the diagonal.

This same procedure can be followed to find the optimal linear decoders
φ f (x) for some linear or nonlinear function f (x). The error to be minimized
then becomes

E = 1
2

〈[
f (x) −

N∑
i=1

(ai (x) + ηi ) φ
f (x)

i

]2〉
x,η

.

The minimization is analogous, with only a differing result for ϒ :

ϒi = 〈 f (x)ai (x)〉x .

Acknowledgments

Special thanks to Charles H. Anderson, Valentin Zhigulin, and John
Conklin for helpful discussions on this project. John Conklin coded the sim-
ulations for controlling the ring attractor. The code for detecting chaos was
graciously provided by Chi-Sang Poon. This work is supported by grants



1312 C. Eliasmith

from the National Science and Engineering Research Council of Canada,
the Canadian Foundation for Innovation, the Ontario Innovation Trust, and
the McDonnell Project in Philosophy and the Neurosciences.

References

Amit, D. J. (1989). Modeling brain function: The world of attractor neural networks. Cam-
bridge: Cambridge University Press.

Askay, E., Gamkrelidze, G., Seung, H. S., Baker, R., & Tank, D. (2001). In vivo intra-
cellular recording and perturbation of persistent activity in a neural integrator.
Nature Neuroscience, 4, 184–193.

Biswal, B., & Dasgupta, C. (2002). Neural network model for apparent deterministic
chaos in spontaneously bursting hippocampal slices. Physical Review Letters, 88,
088102.

Bradley, E. (1995). Autonomous exploration and control of chaotic systems. Cyber-
netics and Systems, 26, 299–319.

Brody, C. D., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent
activity: Discrete attractors, continuous attractors, and dynamic representations.
Current Opinion in Neurobiology, 13, 204–211.

Conklin, J., & Eliasmith, C. (2005). A controlled attractor network model of path
integration in the rat. Journal of Computational Neuroscience, 18, 183–203.

el Manira, A., Tegner, J., & Grillner, S. (1994). Calcium-dependent potassium channels
play a critical role for burst termination in the locomotor network in lamprey.
Journal of Neurophysiology, 72, 1852–1861.

Eliasmith, C., & Anderson, C. H. (2000). Rethinking central pattern generators: A
general approach. Neurocomputing, 32, 735–740.

Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computation, representa-
tion, and dynamics in neurobiological systems. Cambridge, MA: MIT Press.

Eliasmith, C. (2004). Learning context sensitive logical inference in a neurobiological
simulation. In S. Levy & R. Gayler (Eds.), Compositional connectionism in cognitive
science (pp. 17–20), Menlo Park, CA: AAAI Press.

Eliasmith, C., Westover, M. B., & Anderson, C. H. (2002). A general framework for
neurobiological modeling: An application to the vestibular system. Neurocomput-
ing, 46, 1071–1076.

Fukushima, K., Kaneko, C. R. S., & Fuchs, A. F. (1992). The neuronal substrate of
integration in the oculomotor system. Progress in Neurobiology, 39, 609–639.

Fuster, J. M. (2001). The prefrontal cortex—an update: Time is of the essence. Neuron,
30, 319–333.

Goodridge, J. P., & Touretzky, D. S. (2000). Modeling attractor deformation in the
rodent head-direction system. Journal of Neurophysiology, 83, 3402–3410.

Grillner, S., Wallén, P., Brodin, I., & Lansner, A. (1991). The neuronal network generat-
ing locomotor behavior in lamprey: Circuitry, transmitters, membrane properties,
and simulation. Annual Review of Neuroscience, 14, 169–199.

Hansel, D., & Sompolinsky, H. (1998). Modeling feature selectivity in local cortical
circuits. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling. Cambridge,
MA: MIT Press.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1097-6256()4L.184[aid=5777225]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0031-9007()88L.088102[aid=6537755]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0031-9007()88L.088102[aid=6537755]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0959-4388()13L.204[aid=6537753]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0929-5313()18L.183[aid=6537752]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0022-3077()72L.1852[aid=6537751]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0925-2312()32L.735[aid=6537750]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0925-2312()46L.1071[aid=6537749]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0925-2312()46L.1071[aid=6537749]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0301-0082()39L.609[aid=6537748]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0896-6273()30L.319[aid=2851804]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0896-6273()30L.319[aid=2851804]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0022-3077()83L.3402[aid=6537747]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0147-006x()14L.169[aid=845499]


Controlling Spiking Attractor Networks 1313

Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the National Academy of Sciences,
79, 2554–2558.

Kelso, J. A. S., & Fuchs, A. (1995). Self-organizing dynamics of the human brain:
Critical instabilities and Silnikov chaos. Chaos, 5, 64–69.

Koch, C., & Poggio, T. (1992). Multiplying with synapses and neurons. In
T. McKenna, J. Davis, & S. F. Zornetzer (Eds.), Single neuron computation. Orlando,
FL: Academic Press.

Kopell, N., & Ermentrout, G. B. (1988). Coupled oscillators and the design of central
pattern generators. Mathematical Biosciences, 90, 87–109.

Kuo, D., & Eliasmith, C. (2004). Understanding interactions between networks con-
trolling distinct behaviors: Escape and swimming in larval zebrafish. Neurocom-
puting, 58–60, 541–547.

Lai, Y.-C., Harrison, M. A., Frei, M. G., & Osorio, I. (2003). Inability of Lyapunov
exponents to predict epileptic seizures. Physical Review Letters, 91, 068012.

Laing, C. R., & Chow, C. C. (2001). Stationary bumps in networks of spiking neurons.
Neural Computation, 13, 1473–1494.

Marder, E., Kopell, N., & Sigvardt, K. (1997). How computation aids in understanding
biological networks. In P. Stein, S. Grillner, A. Selverston, & D. Stuart (Eds.),
Neurons, networks, and motor behavior. Cambridge, MA: MIT Press.

Matsugu, M., Duffin, J., & Poon, C. (1998). Entrainment, instability, quasi-periodicity,
and chaos in a compound neural oscillator. Journal of Computational Neuroscience,
5, 35–51.

Mel, B. (1994). Information processing in dendritic trees. Neural Computation, 6, 1031–
1085.

Mel, B. (1999). Why have dendrites? A computational perspective. In G. Stuart,
N. Spruston, & M. Häusser (Eds.), Dendrites. New York: Oxford University Press.

Miller, P., Brody, C., & Romo, R. (2003). A recurrent network model of somatosensory
parametric working memory in the prefrontal cortex. Cerebral Cortex, 13, 1208–
1218.

Platt, M. L., & Glimcher, G. W. (1998). Response fields of intraparietal neurons quan-
tified with multiple saccadic targets. Experimental Brain Research, 121, 65–75.

Poon, C.-S., & Barahona, M. (2001). Titration of chaos with added noise. Proceedings
of the National Academy of Science, 98, 7107–7112.

Pouget, A., Zhang, K., Deneve, S., & Latham, P. E. (1998). Statistically efficient esti-
mation using population coding. Neural Computation, 10, 373–401.

Rainer, G., & Miller, E. K. (2002). Timecourse of object-related neural activity in the
primate prefrontal cortex during a short-term memory task. European Journal of
Neuroscience, 15, 1244–1254.

Redish, A. D. (1999). Beyond the cognitive map. Cambridge, MA: MIT Press.
Rieke, F., Warland, D., de Ruyter van Steveninck, R. R., & Bialek, W. (1997). Spikes:

Exploring the neural code. Cambridge, MA: MIT Press.
Romo, R., Brody, C. D., Hernández, A., & Lemus, L. (1999). Neuronal correlates of

parametric working memory in the prefrontal cortex. Nature, 399, 470–473.
Salinas, E., & Abbott, L. F. (1994). Vector reconstruction from firing rates. Journal of

Computational Neuroscience, 1, 89–107.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0027-8424()79L.2554[aid=215261]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0027-8424()79L.2554[aid=215261]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0025-5564()90L.87[aid=6537745]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0899-7667()13L.1473[aid=3230655]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0929-5313()5L.35[aid=6537743]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0929-5313()5L.35[aid=6537743]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0899-7667()6L.1031[aid=215165]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0014-4819()121L.65[aid=6537741]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0027-8424()98L.7107[aid=6537740]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0027-8424()98L.7107[aid=6537740]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0899-7667()10L.373[aid=217419]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0953-816X()15L.1244[aid=6490164]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0953-816X()15L.1244[aid=6490164]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0028-0836()399L.470[aid=4710717]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0929-5313()1L.89[aid=215752]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0929-5313()1L.89[aid=215752]


1314 C. Eliasmith

Salinas, E., & Abbott, L. F. (1996). A model of multiplicative neural responses in
parietal cortex. Proceedings of the National Academy of Sciences USA, 93, 11956–
11961.

Selverston, A. I. (1980). Are central pattern generators understandable? Behavioral
and Brain Sciences, 3, 535–571.

Sereno, A. B., & Maunsell, J. H. R. (1998). Shape selectivity in primate lateral intra-
parietal cortex. Nature, 395, 500–503.

Seung, H. S. (1996). How the brain keeps the eyes still. Proceedings of the National
Academy of Sciences, USA, 93, 13339–13344.

Seung, H. S., Lee, D., Reis, B., & Tank, D. (2000). Stability of the memory of eye
position in a recurrent network of conductance-based model neurons. Neuron, 26,
259–271.

Shadlen, N. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in
the parietal cortex (area lip) of the rhesus monkey. Journal of Neurophysiology, 86,
1916–1936.

Singh, R., & Eliasmith, C. (2004, March 24–28). A dynamic model of working memory in the
PFC during a somatosensory discrimination task. Paper presented at Computational
and Systems Neuroscience 2004, Cold Spring Harbor, NY.

Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos in order to make
sense of the world. Behavioral and Brain Sciences, 10, 161–195.

Snyder, L. H., Batista, A. P., & Andersen, R. A. (1997). Coding of intention in the
posterior parietal cortex. Nature, 386, 167–170.

Touretzky, D. S., & Redish, A. D. (1996). Theory of rodent navigation based on inter-
acting representations of space. Hippocampus, 6, 247–270.

von der Heydt, R., Peterhans, E., & Dursteler, M. (1991). Grating cells in monkey
visual cortex: Coding texture? In B. Blum (Ed.), Channels in the visual nervous
system: Neurophysiology, psychophysics, and models. London: Freund.

Wang, X. J. (2002). Probabilistic decision making by slow reverberation in cortical
circuits. Neuron, 36, 955–968.

Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of
the head-direction cell ensemble: A theory. Journal of Neuroscience, 16, 2112–2126.

Received June 3, 2004; accepted November 15, 2004.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0027-8424()93L.11956[aid=214693]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0028-0836()395L.500[aid=1810370]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0027-8424()93L.13339[aid=2299370]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0027-8424()93L.13339[aid=2299370]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0896-6273()26L.259[aid=2715262]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0896-6273()26L.259[aid=2715262]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0022-3077()86L.1916[aid=2880055]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0022-3077()86L.1916[aid=2880055]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0140-525x()10L.161[aid=540405]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0028-0836()386L.167[aid=311655]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1050-9631()6L.247[aid=215403]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0896-6273()36L.955[aid=6537738]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0270-6474()16L.2112[aid=1279527]

