
IntroductionIntroduction

�� ““BoltzmannBoltzmann”” invokes Stat invokes Stat MechMech

�� Ancestor is Ancestor is HopfieldsHopfields NetworkNetwork

�� Dynamics in terms of MCMCDynamics in terms of MCMC

�� LearningLearning

�� Restricted Restricted BoltzmannBoltzmann MachinesMachines

�� Example Example –– Data Dimensionality ReductionData Dimensionality Reduction



BoltzmannBoltzmann’’ss MachineMachine

�� WonWon’’t win any popularity contest anytime soont win any popularity contest anytime soon

�� NN (Neural Network) with intricate relationship to Stat Physics,NN (Neural Network) with intricate relationship to Stat Physics,
arose from Hopfieldarose from Hopfield’’s NN (Hinton and s NN (Hinton and SejnowskiSejnowski, 1983), 1983)

�� Locality of Learning Rule (Locality of Learning Rule (HebbianesqueHebbianesque) + Generative Model ) + Generative Model 
(unsupervised learning), therefore more biologically plausible (unsupervised learning), therefore more biologically plausible 
than back prop MLPthan back prop MLP

�� Feedback + DynamicsFeedback + Dynamics

�� Multiple Layers or Multiple Layers or ““DeepDeep”” can be constructed using Restricted can be constructed using Restricted 
BoltzmannBoltzmann’’ss Machine (RBM)Machine (RBM)

�� Hidden nodes and conditional inferencing via Hidden nodes and conditional inferencing via ““ClampingClamping””

�� Relatively SlowRelatively Slow



Visualizing HopfieldVisualizing Hopfield’’s Networks Network



HopfieldHopfield’’s Networks Network

�� Equivalent to Spin Glass model, It is 2Equivalent to Spin Glass model, It is 2ndnd

order energy networkorder energy network

�� IsingIsing Model is a specific form of HopfieldModel is a specific form of Hopfield’’s s 
network with only local neighborhood network with only local neighborhood 
connectionsconnections

�� N binary nodes:N binary nodes:

�� Weights are symmetrical, node can either be Weights are symmetrical, node can either be 
0 or 1, network is fully connected, symmetry 0 or 1, network is fully connected, symmetry 
allows for local decision during every updatesallows for local decision during every updates

�� Energy function: Energy function: 

�� HopfieldHopfield’’s Net is an energy network, with s Net is an energy network, with 
dynamics implemented via asynchronous dynamics implemented via asynchronous 
node activation, the dynamics makes it an node activation, the dynamics makes it an 
recurrent attractor networkrecurrent attractor network

S1 . . . Sn, Si = 0 or 1 Wij = Wji, Wii = 0

E = −
∑

i<j

WijSiSj +
∑

i

θiSi



An Attractor NetworkAn Attractor Network

�� AutoassociativeAutoassociative/content addressable memory, categorization, /content addressable memory, categorization, 
noise suppression (noise suppression (EliasmithEliasmith, 2007), 2007)

�� Dynamics:Dynamics:

�� By Construction, each update reduces global energy EBy Construction, each update reduces global energy E

�� Fixed points in state/phase space are local minimumsFixed points in state/phase space are local minimums

�� Each update can be seen as gradient descent in axial directionEach update can be seen as gradient descent in axial direction

�� Often gets stuck in local min, but thatOften gets stuck in local min, but that’’s what we want for autos what we want for auto--
associative memory, where each local minimum represent a associative memory, where each local minimum represent a 
memory!memory!

Si =

{
1
∑
jWijSj − θi > 0

0 else

∆Ei =
∑

j

WijSj − θi



Hopfield LearningHopfield Learning

�� For N training data configurations, use gradient descentFor N training data configurations, use gradient descent

Etotal =
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Same as Hebbian Learning Rule
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What about Global Optimization?What about Global Optimization?

�� From optimization point From optimization point 
of view, how do we find of view, how do we find 
global min ofglobal min of

�� The The ““bias nodebias node”” can be can be 
eliminated assuming an eliminated assuming an 
extra node which is extra node which is 
constantly on and constantly on and 
connects to all other connects to all other 
nodes with weights=biasnodes with weights=bias

E = −
1

2

∑

i,j

WijSiSj

(Duda et al, 2001)



AnnealingAnnealing

�� Physical annealing (slow cooling) is an analogy from metallurgy,Physical annealing (slow cooling) is an analogy from metallurgy,
for finding a lowfor finding a low--energy configuration for systems of atoms of an energy configuration for systems of atoms of an 
alloy or many magnets. The system is heated repeatedly during alloy or many magnets. The system is heated repeatedly during 
cooling schedule, therefore allowing for configurations of highecooling schedule, therefore allowing for configurations of higher r 
energy at certain times during the annealing schedule. energy at certain times during the annealing schedule. 

�� Simulated Annealing has 2 types:Simulated Annealing has 2 types:

�� 1) gives the ability for escaping out of local minima, relations1) gives the ability for escaping out of local minima, relationship to hip to 
gradient descent optimization (Kirkpatrick et al, 1983)gradient descent optimization (Kirkpatrick et al, 1983)

�� 2) in the context of BM simulation and MCMC sampling. In this 2) in the context of BM simulation and MCMC sampling. In this 
case annealing leads faster to equilibrium and helps passage frocase annealing leads faster to equilibrium and helps passage from m 
ridges of high energy (low probability) in state space (Neal, 19ridges of high energy (low probability) in state space (Neal, 1993)93)



Simulated Annealing (Type I)Simulated Annealing (Type I)

Simple Simulated Annealing Pseudocode
//x is a state vector 
//t_max is the max # of iteration
//T[i] is the annealing schedule, T[t_max] = 0
//E(x) is the energy of state x, 
//and the function trying to optimize

vector<float> x = rand_init(x);
for (int i = 0; i < t_max; ++i)
{

x1 = rand_perturb(x, rho);
if (E(x1) < E(x))

x = x1;
else if (exp(-(E(x1)-E(x))/T[i]) > rand(0,1))

x = x1;
}

As T[i] -> 0, Pr( else if case = true ) -> 0



Simulated Annealing (Type I)Simulated Annealing (Type I)

SA works well in the left energy landscape but not in the right energy 

landscape

(Duda et al, 2001)



Simulated Annealing (Type II)Simulated Annealing (Type II)

�� Kirkpatrick et al. formulated SA as sampling from the canonical Kirkpatrick et al. formulated SA as sampling from the canonical 
distribution of a system at T=0, where probability is distribution of a system at T=0, where probability is 
concentrated at states with minimum energy, therefore an concentrated at states with minimum energy, therefore an 
optimization method. optimization method. 

�� For Probability Inference, want to sample from a canonical For Probability Inference, want to sample from a canonical 
distribution defined via an energy function that reproduces the distribution defined via an energy function that reproduces the 
pdfpdf when T=1. In this case, SA can be used for easier reach of when T=1. In this case, SA can be used for easier reach of 
equilibrium. Such is the case with BM. (Ackley et al, 1985)equilibrium. Such is the case with BM. (Ackley et al, 1985)

�� E.g. If the state space of a certain distribution contains high E.g. If the state space of a certain distribution contains high 
energy boundaries, convergence of MCMC sampling (Metropolis energy boundaries, convergence of MCMC sampling (Metropolis 
or Gibbs) or reaching an thermodynamic equilibrium (Stat or Gibbs) or reaching an thermodynamic equilibrium (Stat MechMech
formulation) would take much longer.formulation) would take much longer.



What happens to a Distribution?What happens to a Distribution?

(Duda et al, 2001)



BoltzmannBoltzmann’’ss MachineMachine

�� Paradigm Shift Paradigm Shift –– We want to model the statistics of the We want to model the statistics of the 

input datainput data

�� This is known as a generative model: it is capable of This is known as a generative model: it is capable of 

generating the same distribution as the training input generating the same distribution as the training input 

data on its owndata on its own

�� BM accomplish this by using probabilistic neuronsBM accomplish this by using probabilistic neurons

�� easily computed via clamping!easily computed via clamping!E[α|β]



A A BoltzmannBoltzmann MachinistMachinist’’s s 

Black BoardBlack Board



BoltzmannBoltzmann’’ss MachineMachine

Z(T )− Partition Function

Each global state has an associated energy and also a probability according 

to the Boltzmann’s Distribution

Z(T ) =
∑

β

exp−E(β)/T

Pα
Pβ

= exp−(Eα−Eβ )/T

E = −
1

2

∑

i,j

WijSjSi

Boltzmann’s Distribution

γ, β −Global Configuration States

Pr(γ) = exp−E(γ)/T /Z(T )



Visualizing BMVisualizing BM

Notice that the hidden units are now possible with BM, which allows for 

• a richer representation of Pr – higher order regularities

• think of it as unsupervised feature extraction

• increases the capacity of the network (big problem for Hopfield’s Network ~.15d)

(Duda et al, 2001)



Stochastic Stochastic BoltzmannBoltzmann’’ss MachineMachine

�� Update Rule (Stochastic, Update Rule (Stochastic, 

unlike unlike HopfieldsHopfields):  ):  

pi(+1) =
1

1 +exp−∆Ei/T
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Logistic Activation

∆Ei = E(Si = 0)−E(Si = +1) =
∑

j

WijSj

Note: the probability of the i-th neuron firing is monotonically 

increasing with its activation. Only possible due to the symmetric W



What the?What the?

Well known Well known NNsNNs are are 

InputInput-->Black Box>Black Box-->Output>Output

(MLP for pattern recognition)(MLP for pattern recognition)

oror

Noisy DataNoisy Data-->Black Box>Black Box-->Memory Item>Memory Item

((AutoassociativeAutoassociative Memory)Memory)

oror

xx-->Black Box>Black Box-->>f(xf(x))

(RBF for regression)(RBF for regression)

oror

xx-->Encoding>Encoding-->Transformation>Transformation-->Decoding>Decoding-->>f(xf(x) ) 

(NEF)(NEF)

Where does binary neurons firing probabilistically fit into all Where does binary neurons firing probabilistically fit into all this?this?



MCMC Gibbs Sampler!MCMC Gibbs Sampler!

�� It turns out the update rule for BM is simply a Gibbs Sampler foIt turns out the update rule for BM is simply a Gibbs Sampler for the distribution r the distribution 
defined bydefined by

�� Gibbs Sampler (Gibbs Sampler (GemanGeman and and GemanGeman, 1984) works well when the domain of the variables , 1984) works well when the domain of the variables 
are small and finite, or that the conditional distributions are are small and finite, or that the conditional distributions are parametric and easy to parametric and easy to 
sample from (Neal,  1993)sample from (Neal,  1993)

�� Gibbs Sampler: replaces each component of a random vector with aGibbs Sampler: replaces each component of a random vector with a value selected from value selected from 
its distribution conditional on other components remaining the sits distribution conditional on other components remaining the sameame

P (si = +1| {sj : j �= i}) =
P (si = +1, sj : j �= i)

P (si = +1, sj : j �= i) + P (si = −1, sj : j �= i)

P (si = +1| {sj : j �= i}) =
e−Eα/T

e−Eα/T + e−Eβ/T

P (si = +1| {sj : j �= i}) =
1

1 + e−(Eβ−Eα)/T

Note: This is also same as 
The Metropolis with 

Boltzmann’s

acceptance function

Pr(γ)
Pr(γ) = exp−E(γ)/T /Z(T )



ExampleExample
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Learning w/o Hidden NodesLearning w/o Hidden Nodes

�� If the full Pr(.) for entire configurations of all If the full Pr(.) for entire configurations of all 
nodes are known, then learning is easy nodes are known, then learning is easy 

�� Let the Pr(.) unclamped by the environment Let the Pr(.) unclamped by the environment 
(BM running freely) be:(BM running freely) be: P−α = e−Eα/T /ZP−α

Note: the second term is just

the probability of finding the ith

and jth neuron on at same time
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Learning w/ Hidden NodesLearning w/ Hidden Nodes

�� The previous equation and HopfieldThe previous equation and Hopfield’’s learning rule are s learning rule are 
inappropriate with the inclusion of hidden nodes, since inappropriate with the inclusion of hidden nodes, since 
their states as well as probability distribution are their states as well as probability distribution are 
unknownunknown

�� The environment/teacher can only present the states The environment/teacher can only present the states 
and the probability distribution of the visible nodesand the probability distribution of the visible nodes

�� The difficult problem becomes learning how to use the The difficult problem becomes learning how to use the 
hidden nodes such that the visible nodes exhibits the hidden nodes such that the visible nodes exhibits the 
required probabilitiesrequired probabilities

�� Need to adapt all connection weights in the network Need to adapt all connection weights in the network 
when given only the Pr distribution (or training when given only the Pr distribution (or training 
samples) over the visible nodessamples) over the visible nodes



Learning w/ Hidden NodesLearning w/ Hidden Nodes

�� Minimize relative entropy of the environment clamped data and thMinimize relative entropy of the environment clamped data and the model generated datae model generated data

�� We also assume there are two phases phase + and phase We also assume there are two phases phase + and phase --; ; 

�� During phase +, the environment clamps a particular configuratioDuring phase +, the environment clamps a particular configuration over the visible nodes long n over the visible nodes long 
enough to reach thermo equilibriumenough to reach thermo equilibrium

�� During phase During phase --, the visible units are unclamped and the configurations are fre, the visible units are unclamped and the configurations are freely generated by the ely generated by the 
networknetwork

DKL(P+||P−) =
∑

α

P+(Vα) ln
P+(Vα)

P−(Vα)

Eαβ = −
∑

i<j

wijs
αβ
i sαβj

P−(Vα) =
∑

β

P−(Vα ∧Hβ) =

∑
β exp−Eαβ/T

∑
λµ exp−Eλµ/T

∂e−Eαβ/T

∂wij
=

1

T
sαβi sαβj e−Eαβ/T

∂DKL

∂wij
= −

∑

α

P+(Vα)

P−(Vα)

∂P−(Vα)

∂wij

Marginalization over beta

+ve; zero iff both 

distributions are the same

Energy of a given 

joint configuration

Vision Analogy



Learning w/ Hidden NodesLearning w/ Hidden Nodes

=
1

T

[
∑

β

P−(Vα ∧Hβ)sαβi sαβj − P−(Vα)
∑

λµ

P−(Vλ ∧Hµ)sλµi sλµj

]

This is the change of model generated probability of visible state alpha as w_ij changes

P+(Vα ∧Hβ) = P+(Hβ|Vα)P+(Vα) P−(Vα ∧Hβ) = P−(Hβ|Vα)P−(Vα)

P−(Hβ|Vα) = P+(Hβ|Vα) The Pr of hidden states at equilibrium must be the same 

given the visible state whether or not that visible state is 

reached by environment clamping or free-running!

∂P−(Vα)

∂wij
=

1
T

∑
β e

−Eαβ/T sαβi sαβj∑
αβ e

−Eαβ/T
−

∑
β e

−Eαβ/T
∑
λµ e

−Eλµ/T sλµi sλµj
(∑

λµ e
−Eλµ/T

´ 2

∂DKL

∂wij
= −

1

T

[
∑

α

P+(Vα)

P−(Vα)

∑

β

P−(Vα∧Hβ)sαβi sαβj −
∑

α

P+(Vα)

P−(Vα)
P−(Vα)

∑

λµ

P−(Vλ∧Hµ)sλµi sλµj

]



Learning w/ Hidden NodesLearning w/ Hidden Nodes

∑

α

P+(Vα) = 1

Clamped by the environment (Learning)

Generated freely (Unlearning)

∂DKL

∂wij
= −

1

T
[p+ij − p−ij ]

P−(Vα ∧Hβ)
P+(Vα)

P−(Vα)
= P+(Vα ∧Hβ)

P+(Vα ∧Hβ)

Where

This represents the Pr of a certain global configuration 

when the environment set the marginal            ,

and the network generates

P(Vα)

P−(Hβ|Vα)

Works for any pair of nodes, 

hidden or visible!

p+ij ≡
∑

αβ

P+(Vα ∧Hβ)sαβi sαβj

p−ij ≡
∑

λµ

P−(Vλ ∧Hµ)sλµi sλµj



Learning w/ Hidden NodesLearning w/ Hidden Nodes

(Roweis, [6])



Learning w/ Hidden NodesLearning w/ Hidden Nodes

�� The training algorithm alternates between two phases, phase+ The training algorithm alternates between two phases, phase+ 
and phaseand phase--

�� Phase+ is known as the learning phase Phase+ is known as the learning phase 

�� PhasePhase-- is known as the unlearning phaseis known as the unlearning phase

�� Hinton and Hinton and SejnowskiSejnowski came up with the name came up with the name ““unlearningunlearning””
from Crick and from Crick and MitchsonMitchson (1983) where REM sleep was (1983) where REM sleep was 
proposed as when reverse learning might proposed as when reverse learning might occurroccurr!!

�� In BM, it is minimizing an info theoretic measure of the  In BM, it is minimizing an info theoretic measure of the  
difference difference b/tb/t environment and model distributionenvironment and model distribution

�� Also look at as Also look at as HebbianHebbian learning w/ +learning w/ +veve weights when info weights when info 
from environment is capturedfrom environment is captured

�� HebbianHebbian learning w/ learning w/ --veve weights when system randomly weights when system randomly 
generates samples from generates samples from BoltzmannBoltzmann’’ss distributiondistribution



Phase+ (Learning Phase)Phase+ (Learning Phase)

�� Visible nodes are clamped by a particular pattern. Visible nodes are clamped by a particular pattern. 

�� The network is allowed to reach thermal equilibrium as The network is allowed to reach thermal equilibrium as 
temperature is reduced to T_0(e.g. 10), following an annealing temperature is reduced to T_0(e.g. 10), following an annealing 
schedule. schedule. 

�� The hidden nodes are the only ones changing its states. The hidden nodes are the only ones changing its states. 
Thermo equilibrium == MCMC convergence; e.g. Thermo equilibrium == MCMC convergence; e.g. 

becomes stationarybecomes stationary

�� This simulated annealing is type II and speeds up MCMC This simulated annealing is type II and speeds up MCMC 
convergence to the distributionconvergence to the distribution

�� Upon convergence (not before), more iterations (e.g. 10) are Upon convergence (not before), more iterations (e.g. 10) are 
run in which the correlation statistics are collectedrun in which the correlation statistics are collected

�� The N (e.g. 20) runs are performed as different patterns are The N (e.g. 20) runs are performed as different patterns are 
clamped to the input of the network, the                averagedclamped to the input of the network, the                averaged
over these trials are over these trials are 

〈si〉

P−(Hβ|Vα)

〈sisj〉data

〈sisj〉data
p+ij



PhasePhase-- (Unlearning Phase)(Unlearning Phase)

�� None of the nodes are clamped and the annealing None of the nodes are clamped and the annealing 
process is the same as phase+process is the same as phase+

�� The statistics collected is The statistics collected is 

�� The set of 2N annealing process are called 1 sweepThe set of 2N annealing process are called 1 sweep

�� For each sweep, the correlation for all connections For each sweep, the correlation for all connections i,ji,j
are collectedare collected

�� Weight update according to gradient descent on the Weight update according to gradient descent on the 
KLKL--divergencedivergence

�� Weight decay [w(n+1) = Weight decay [w(n+1) = w(nw(n)*.9995] can also be used )*.9995] can also be used 
to serve as a form of regularization and helps to serve as a form of regularization and helps 
convergence to equilibriumconvergence to equilibrium

p−ij



Nested LoopsNested Loops

while DKL > ε , calculate ∆Wij

Phase+, for all patterns Vα

Phase-, for all starting patterns Vα

Collect corre stat 〈sisj〉data

Collect corre stat 〈sisj〉model

Really, really slow…

However, it’s entirely biologically plausible, especially if REM sleep performs

Phase- unlearning

Anneal to equilibrium or convergence

Anneal to equilibrium or convergence



Pros and ConsPros and Cons

�� Hidden nodes allows for encoding of higher than 2Hidden nodes allows for encoding of higher than 2ndnd

order regularities order regularities 

�� Represent probabilities Represent probabilities directlydirectly via Gibbs sampler, trying via Gibbs sampler, trying 
to emulate the actual processto emulate the actual process

�� Unlike other generative models which uses functions to Unlike other generative models which uses functions to 
represent distributions, e.g. PPCArepresent distributions, e.g. PPCA

�� Conditional inference via clamping: a BM can used for Conditional inference via clamping: a BM can used for 
classification by learning the joint classification by learning the joint pdfpdf of input and of input and 
output; Inferencing takes place by clamping the input output; Inferencing takes place by clamping the input 
with test data and arriving at the MAP solution!with test data and arriving at the MAP solution!

�� Really Slow Really Slow -- O( hours O( hours --> days)> days)



ExtensionsExtensions

�� MeanfieldMeanfield approximation speeds up the learning approximation speeds up the learning 
process at a cost of accuracy (Petersen and Andersen, process at a cost of accuracy (Petersen and Andersen, 
1987)1987)

�� Units take on continuous values (Welling et. al., 2005)Units take on continuous values (Welling et. al., 2005)

�� Rate coded BM ( Rate coded BM ( TehTeh and Hinton 2001): estimates the and Hinton 2001): estimates the 
‘‘firing ratefiring rate’’ by these binary stochastic nodes, rate by these binary stochastic nodes, rate 
represent continuous valuesrepresent continuous values

�� Higher ordered BMs (Higher ordered BMs (SejnowskiSejnowski, 1986), 1986)

�� Many more Many more …… since BM is intricately related to MRF, since BM is intricately related to MRF, 
which are part of undirected graphical modelswhich are part of undirected graphical models



Restricted Restricted BoltzmannBoltzmann MachineMachine

�� First introduced by (First introduced by (SmolenskySmolensky, 1986), named , 1986), named ““HarmoniumsHarmoniums””

�� 1 layer hidden, 1 layer visible; No hidden1 layer hidden, 1 layer visible; No hidden--hidden or visiblehidden or visible--

visible connectionsvisible connections

�� Hidden nodes are conditionally independent given visible nodesHidden nodes are conditionally independent given visible nodes

(Chen. Murray. [11])



Restricted Restricted BoltzmannBoltzmann MachineMachine

P (h1, h2| V ) =
1

Z
e
∑
w1jvjh1e

∑
w2jvjh2 = P (h1| V )P (h2| V )

Easy to calculate

Because of independence of hidden nodes〈vihj〉data = 〈vihj〉data,hj

〈vihj〉data = 〈vihj〉data,hk:k=1 to n

〈vihj〉data = 〈vi × [1× P (hj = +1| V ) + 0× P (hj = 0| V )]〉data

〈vihj〉model still needs Gibbs sampling

∂DKL

∂wij
= −

1

T
[p+ij − p−ij ] = −

1

T
[〈vihj〉data − 〈vihj〉model]



Restricted Restricted BoltzmannBoltzmann MachineMachine

• Start at a random state in one of the layers
• Perform alternate Gibbs sampling

• All the nodes in one layer is updated in parallel given the other layer

• Repeated until the distribution reaches equilibrium or convergence

(Hinton, 2001)



Contrastive Divergence LearningContrastive Divergence Learning

�� (Hinton, 2001) To speed things up(Hinton, 2001) To speed things up

〈vihj〉model is replaced with 〈vihj〉recons

1. Starting with the visible units clamped to the data, update all the hidden units in parallel

2. Holding the hidden units constant, update all the visible units – “reconstruction”

3. Update the hidden units again

Instead of ∆wij = η
(
〈vihj〉data − 〈vihj〉model

)

∆wij = η
(
〈vihj〉data − 〈vihj〉recons

)



Contrastive Divergence LearningContrastive Divergence Learning

Think       as a Markov Chain with the data 

distribution at time step 0
Q
0

Hence the name

Intuition: To minimize the urges of the chain to wander away from initial

distribution in the first step

Let P+ ≡ Q0 and P− ≡ Q∞

DKL ≡ Q0||Q∞

CD ≡ (Q0||Q∞ −Q1||Q∞)

∆wij = η
(
〈vihj〉data − 〈vihj〉recons

)
≈

∂CD

∂wij



Contrastive Divergence LearningContrastive Divergence Learning

Q0||Q∞ ≥ Q1||Q∞

Q0 == Q1 implies Q0 == Q∞ and the model would be perfect

Since we’d be one step closer to equilibrium distribution

It is reported to work pretty well and justifies the speed up in not computing 

(Hinton, 2002)

Q∞

So we can learn 2 layer RBM, now let’s learn more layers!



““DeepDeep”” NetworkNetwork

�� Deep network composed of successive RBM Deep network composed of successive RBM 
layers can be stacked one on top of anotherlayers can be stacked one on top of another

�� The hidden layer of the bottom RBM serves as The hidden layer of the bottom RBM serves as 
the visible layer of the top RBMthe visible layer of the top RBM

�� After training the combined network is a After training the combined network is a 
multilayer generative networkmultilayer generative network

�� Learning is unsupervised, with the final level Learning is unsupervised, with the final level 
features typically much more useful for features typically much more useful for 
classification classification 



Example Example –– Dimension ReductionDimension Reduction

�� AutoencodersAutoencoders. Hinton . Hinton 
and and SalakhutdinovSalakhutdinov, , 
Science, 2006. Science, 2006. 

�� With 2With 2--4 hidden layers, 4 hidden layers, 
they are hard to train. they are hard to train. 
Easily stuck in local Easily stuck in local 
minimum if initial weights minimum if initial weights 
are too largeare too large

�� Want to find Want to find ““goodgood””
weights before beginning weights before beginning 
gradient descentgradient descent

�� Use Deep RBM to find Use Deep RBM to find 
these good weights these good weights ––
PretrainingPretraining

�� Progressively reveal lowProgressively reveal low--
dimensional and nondimensional and non--
linear feature in datalinear feature in data

(Hinton, 2006)



Dimension ReductionDimension Reduction

�� After After pretrainingpretraining, the , the RBMsRBMs are stacked to form an encoder and are stacked to form an encoder and 
decoder networkdecoder network

�� Stochastic nodes are replaced by deterministic probabilitiesStochastic nodes are replaced by deterministic probabilities

�� BackpropBackprop is used to fineis used to fine--tune the network for optimum tune the network for optimum 
reconstructionreconstruction

�� Visible nodes of the first layer RBM replaced with linear units Visible nodes of the first layer RBM replaced with linear units 
with with gaussiangaussian noisenoise

�� All other visible nodes had [0 1] continuous value and were set All other visible nodes had [0 1] continuous value and were set 
to the probability of the hidden nodes belowto the probability of the hidden nodes below

�� All hidden nodes except the All hidden nodes except the ““code layercode layer”” are binary stochastic are binary stochastic 
nodesnodes

�� The hidden nodes in the The hidden nodes in the ““code layercode layer”” took on value drawn from took on value drawn from 
unit variance unit variance gaussiangaussian, mean determined by the input to it, mean determined by the input to it



ResultsResults

(Hinton, 2006)



ThoughtsThoughts

�� PretrainingPretraining is useful because it make sure that most information is useful because it make sure that most information 
of weights comes from modeling the dataof weights comes from modeling the data

�� Unlike LLE and ISOMAP (Both also published in Science in Unlike LLE and ISOMAP (Both also published in Science in 
2000!), it can encode and also decode2000!), it can encode and also decode

�� Reported 1.2% error rate, beating  Reported 1.2% error rate, beating  SVMsSVMs and and BackpropsBackprops (No (No 
mentioning of mentioning of LeNetLeNet) on MNIST data set, using ) on MNIST data set, using 784-500-500-
2000-10 classificator

� Shares similar Encoder->Representation->Decoder semantic 
with NEF.

� The code layer could represent higher ventral stream areas such 
as the anterior inferior temporal lobe, or in the case of faces, the 
fusiform gyrus



ConclusionConclusion

�� HopfieldHopfield’’s Net and BM intricately connected to Stat s Net and BM intricately connected to Stat 
MechMech

�� Update in HopfieldUpdate in Hopfield’’s Net: gradient descents Net: gradient descent

�� Update in BM: Gibbs samplingUpdate in BM: Gibbs sampling

�� BM is a generative model and represents distributions BM is a generative model and represents distributions 
directly directly 

�� BM is unsupervised, feedbacks, local learning BM is unsupervised, feedbacks, local learning -->>

biologically plausiblebiologically plausible

�� Slowness and ways to speedup using approximationsSlowness and ways to speedup using approximations

�� Though old, the ideas from BM shows up in many Though old, the ideas from BM shows up in many 
recent graphical model researchesrecent graphical model researches
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