Patients with pulvinar lesions exhibit localization deficits and more severe attentional modulations. Stimuli surrounding the field of attention (FOA) are suppressed, and object-centred reference frame in top most layer. At each layer, minimize the loss of information from the FOA.

Problems with existing models:
- Lack details of neuronal representations, transformations and operations
- Weight matrices are recomputed for each focus of attention
- Implausible number of pulvinar neurons (e.g. 2^3)

Existing models of visuospatial attention typically assume a single process that determines where to direct attention. With this location selected, how does attention affect the processing of visual information through cortex?

Dynamic Routing Model for Visuospatial Attention

Bruce Bobier, Terrence C. Stewart, Chris Eliasmith
Centre for Theoretical Neuroscience
University of Waterloo <http://ctn.uwaterloo.ca/>

Introduction

- Existing models of visuospatial attention typically deal with determining where to direct attention [1].
- With this location selected, how does attention affect the processing of visual information through cortex?
- Problems with existing models:
 - Lack details of neuronal representations, transformations and dynamics
 - Weight matrices are recomputed for each focus of attention
 - Implausible number of pulvinar neurons (e.g. 2^3)

Patterns of neuronal activations are known to vary due to the location of the attended stimulus within the receptive field (RF). Determining where to direct attention is a complex process that involves multiple brain regions and levels of processing.

Neural Implementation

- Implemented using the Neural Engineering Framework [2]
 - 7 input and 3 output columns – 150 LIF neurons per population
 - Intermediate neurons compute a non-linear combination of control and feedforward visual signals
- Control signal indicates where to sample within column's RF
- When control signal is outside of neuron's RF, default routing is used (i.e. entire visual field is resampled at each layer)

Results

- Detailed spiking LIF implementation of attentional routing
- Requires a plausible number of pulvinar neurons
- Static synaptic weights and low dimensional control signal
- Consistent with timing of attentional modulation of neural activity
- Scales well (tested up to 40,000 neurons)
- Accounts for empirical observations

Predictions

- Case 1 – Linear dendrites
 - Intermediate cortical neurons that are responsive to both cortical afferents and indirect pulvinar signals
 - Non-linear dendrites are not required, however intermediate neurons are required
- Case 2 – Non-linear dendrites
 - Far fewer neurons would be needed
 - In either case, cortical neurons in lamina 4 receiving direct pulvinar projections need not be sensitive to visual stimuli

References: