Real Time Vehicle Tracking
Using Background Subtraction and Kalman Filters

Jonathan Gagné
Center for Theoretical Neuroscience
University of Waterloo

May 2009
Overview

- **Introduction**
 - Object Tracking
 - Vehicle Tracking

- **Theory & Implementation**
 - Segmentation
 - Tracking

- **Results**

- **Q & A**
Introduction – Object Tracking

- Object Tracking
 - Object representation
 - Feature Selection
 - Object Detection
 - Tracking
Introduction – Object Tracking

- Object Representation

Fig. 1. Object representations. (a) Centroid, (b) multiple points, (c) rectangular patch, (d) elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g) control points on object contour, (h) complete object contour, (i) object silhouette.
Introduction – Object Tracking

- Feature Selection for Tracking
 - Colour
 - Edges
 - Optical Flow
 - Texture
Introduction – Object Tracking

- **Object Detection**

| Point detectors | Moravec’s Detector
| | Harris Detector
| | Scale Invariant Feature Transform
| | Affine Invariant Point Detector
| Segmentation | Mean-Shift
| | Graph-Cut
| | Active Contours
| Background Modeling | Mixture of Gaussians
| | Eigenbackground
| | Wall Flower
| | Dynamic Texture Background
| Supervised Classifiers | Support Vector Machines
| | Neural Networks
| | Adaptive Boosting |
Introduction – Object Tracking

- **Tracking**
 - Point Tracking (a)
 - Kernel Tracking (b)
 - Silhouette Tracking (c) & (d)
Introduction – Object Tracking

- Tracking Challenges
 - Correspondence
 - Occlusion

Fig. Point correspondence. (a) All possible associations of a point (object) in frame $t-1$ with points (objects) in frame t, (b) unique set of associations plotted with bold lines, (c) multiframe correspondences.
Introduction – Vehicle Tracking

Vehicle Tracking

- **Motivation**
 - Traffic information
 - Reduce urban transportation industry costs
 - Future: Develop “intelligent” transportation system
 - Surveillance (I’d rather not mention)
 - Public Sector
 - Private Sector
Introduction — Vehicle Tracking

- **Object**
 - Track vehicles on a highway
 - Count them

- **Implementation**
 - Real-time
 - OpenCV & C++
Theory Overview

- **Segmentation**
 - Noise removal (minimization)
 - Background subtraction
 - Contour isolation
 - Rectangle fitting

- **Tracking**
 - Correspondence
 - Adding & removing vehicles
 - Persistence
 - Prediction
Theory – Segmentation

Noise minimization

- Gaussian Blur
 - Linear Convolution Filter
Theory – Segmentation

Convolution

\[I_A(i, j) = I \ast A = \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} A(h, k)I(i-h, j-k) \]

where \(A \) (and \(G \)) is the kernel and \(I \) is the image.

Gaussian Kernel is Separable

\[I_G = I \ast G = \]

\[= \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} G(h, k)I(i-h, j-k) = \]

\[= \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} e^{\frac{h^2+k^2}{2\sigma^2}}I(i-h, j-k) = \]

\[= \sum_{h=-m/2}^{m/2} e^{\frac{h^2}{2\sigma^2}} \sum_{k=-m/2}^{m/2} e^{\frac{k^2}{2\sigma^2}}I(i-h, j-k) \]

since \[\frac{h^2+k^2}{2\sigma^2} = \frac{h^2}{2\sigma^2} + \frac{k^2}{2\sigma^2} \]
Theory – Segmentation

- **Gaussian Kernel is Separable**

Convoluting rows and then columns with a 1-D Gaussian kernel.

\[
\begin{align*}
I & \ast \frac{1}{38} \begin{bmatrix} 1 & 9 & 18 & 9 & 1 \end{bmatrix} = I_r \\
I_r & \ast \frac{1}{38} \begin{bmatrix} 1 \\ 9 \\ 18 \\ 9 \\ 1 \end{bmatrix} = \text{result}
\end{align*}
\]

The complexity increases linearly with \(m \) instead of with \(m^2 \).
Theory – Segmentation

Background Subtraction

- OpenCV implementation (without shadow detection)
Theory – Segmentation

Background Subtraction (continued)

- **Adaptive Gaussian Mixture Model**
 - Each pixel is modelled by a mixture of K Gaussian distributions
 - $\text{BG Pixel} \leq T \text{ stdev}$
 - $\text{FG Pixel} > T \text{ stdev}$
 - where T is the threshold
Theory — Segmentation

Background Subtraction (continued)

- **Online Expectation-Maximization (EM)**
 - Iterative parameter estimation
 - Benefits
 - Mathematica demonstration
Theory – Segmentation

- Finding Outside Contours
- Find Enclosed box
- Classification (simple for vehicles)
 - Keep boxes with size > Threshold
 (prevents noise from being detected as a car)
Correspondence

- Compare each new segmented object to each tracked object with the distance cost function:

\[d^i = (a^i_x - b^i_x)^2 + (a^i_y - b^i_y)^2 \]

where \(a^i \) is the new object and \(b^i \) is the tracked object.

- Add each comparison that is less than \(T \) to a list.
- Order list (lowest cost first).
- Match first and remove all match with \(a^i \) and \(b^i \).
Theory – Vehicle Tracking

- **Adding Vehicles**
 - Mark all detected unmatched vehicles as potential
 - If found in next g frames then add

- **Subtracting Vehicles**
 - All vehicles not found in h

- **Persistence**
 - Object not found within h then not updated but still considered tracked

- **Occlusion**

$g, h \in [1, 2, ..., 10]$
Theory – Vehicle Tracking

Prediction

- **Kalman Filter**
 - Estimates a system’s state (optimal)
 - Maximizes a posteriori probability

- **Assumptions:**
 - System’s dynamics are linear
 - Noise is additive, white, and Gaussian
Kalman Filter (continued)

- **Current state vector** x_k
 \[x_k = Fx_{k-1} + Bu_k + w_k \]

- F: transfer matrix
- B: relates the controls to x_k
- u_k: control vector
- w_k: the process noise vector
 - noise in state of the system.
 - w_k: random variable $N(0; Q_k)$.
Kalman Filter (continued)

- **Measurement states** z_k

 $$z_k = H_k x_k + v_k$$

- H_k : relates x_k to z_k

- v_k : measurement noise

 random variable with $N(0; R_k)$.
Theory – Vehicle Tracking

Kalman Filter (continued)

- **Predict**

 \[
 x_k^- = Fx_{k-1} + Bu_{k-1} + w_k
 \]

 \[
 P_k^- = FP_{k-1}F^T + Q_{k-1}
 \]

- \(P_k\) : error covariance
Theory – Vehicle Tracking

Kalman Filter (continued)

- **Update**

\[
K_k = P_k^- H_k^- (H_k P_k^- H_k^T + R_k)^{-1}
\]

\[
x_k = x_k^- + K_k (z_k^- - H_k x_k^-)
\]

\[
P_k = (I - K_k H_k) P_k^{-}
\]

- \(K_k\): Kalman gain
 - weight to assign to new information
Theory – Vehicle Tracking

Kalman Filter Implementation Details

\[x = \begin{bmatrix} x \\ y \\ v_x \\ v_y \end{bmatrix}, \quad F = \begin{bmatrix} 1 & 0 & dt & 0 \\ 0 & 1 & 0 & dt \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[z = \begin{bmatrix} z_x \\ z_y \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \]
Results
Questions and Discussion