

Real Time Vehicle Tracking Using Background Subtraction and Kalman Filters

Jonathan Gagné Center for Theoretical Neuroscience University of Waterloo

Introduction

Object TrackingVehicle Tracking

Theory & Implementation

- Segmentation
- Tracking

Results

🗆 Q & A

Object Tracking

- Object representation
- Feature Selection
- Object Detection
- Tracking

Object Representation

Fig. 1. Object representations. (a) Centroid, (b) multiple points, (c) rectangular patch, (d) elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g) control points on object contour, (h) complete object contour, (i) object silhouette.

Feature Selection for Tracking

Colour

Edges

Optical Flow

Texture

Object Detection

Point detectors	Moravec's Detector Harris Detector Scale Invariant Feature Transform Affine Invariant Point Detector
Segmentation	Mean-Shift Graph-Cut Active Contours
Background Modeling	Mixture of Gaussians Eigenbackground Wall Flower Dynamic Texture Background
Supervised Classifiers	Support Vector Machines Neural Networks Adaptive Boosting

Tracking

- Point Tracking (a)
- Kernel Tracking (b)
- Silhouette Tracking (c) & (d)

Tracking Challenges

Correspondence

Occlusion

Fig. Point correspondence. (a) All possible associations of a point (object) in frame t - 1 with points (objects) in frame t, (b) unique set of associations plotted with bold lines, (c) multiframe correspondences.

Introduction – Vehicle Tracking

Vehicle Tracking

Motivation

- Traffic information
 - Reduce urban transportation industry costs
 - Future: Develop "intelligent" transportation system
- Surveillance (I'd rather not mention)
 - Public Sector
 - Private Sector

Introduction – Vehicle Tracking

Object

Track vehicles on a highway

Count them

Implementation

Real-time

OpenCV & C++

Theory Overview

Segmentation

- Noise removal (minimization)
- Background subtraction
- Contour isolation
- Rectangle fitting

Tracking

- Correspondence
- Adding & removing vehicles
- Persistence
- Prediction

Noise minimization

🗆 Gaussian Blur

Linear Convolution Filter

 $\sigma = 1$

Convolution

$$I_A(i, j) = I * A = \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} A(h, k) I(i - h, j - k)$$

where A (and G) is the kernel and I is the image

Gaussian Kernel is Separable

$$\begin{split} I_{G} &= I * G = \\ &= \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} G(h,k) I(i-h,j-k) = \\ &= \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} e^{-\frac{h^{2}+k^{2}}{2\sigma^{2}}} I(i-h,j-k) = \\ &= \sum_{h=-m/2}^{m/2} e^{-\frac{h^{2}}{2\sigma^{2}}} \sum_{k=-m/2}^{m/2} e^{-\frac{k^{2}}{2\sigma^{2}}} I(i-h,j-k) = \end{split}$$

since
$$e^{\frac{h^2+k^2}{2\sigma^2}} = e^{\frac{h^2}{2\sigma^2}}e^{\frac{k^2}{2\sigma^2}}$$

S

Gaussian Kernel is Separable

Convolving rows and then columns with a 1-D Gaussian kernel.

The complexity increases linearly with m instead of with m^2 .

Background Subtraction

KaewTraKulPong, P. and Bowden, R. (2001). "An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection"

OpenCV implementation (without shadow detection)

Background Subtraction (continued)

Adaptive Gaussian Mixture Model

- Each pixel is modelled by a mixture of K Gaussian distributions
- BG Pixel <= T stdev</p>
- FG Pixel > T stdev

where T is the threshold

Background Subtraction (continued)

Online Expectation-Maximization (EM)

- Iterative parameter estimation
- Benefits
- Mathematica demonstration

Finding Outside Contours

Find Enclosed box

 Classification (simple for vehicles)
Keep boxes with size > Threshold (prevents noise from being detected as a car)

Correspondence

Compare each new segmented object to each tracked object with the distance cost function:

$$d^{i} = (a_{x}^{i} - b_{x}^{i})^{2} + (a_{y}^{i} - b_{y}^{i})^{2}$$

where a^i is the new object and b^i is the tracked object

- Add each comparison that is less than T to a list
- Order list (lowest cost first)
- **D** Match first and remove all match with a^i and b^i

Adding Vehicles

Mark all detected unmatched vehicles as potential
If found in next g frames then add

Subtracting Vehicles

All vehicles not found in h

$$g, h \in [1, 2, ..., 10]$$

Persistence

- Object not found within h then not updated but still considered tracked
- Occlusion

Prediction

Kalman Filter

Estimates a system's state (optimal)

Maximizes a posteriori probability

□ Assumptions:

system's dynamics are linear

noise is additive, white, and Gaussian

Kalman Filter (continued)

- Current state vector x_k $x_k = Fx_{k-1} + Bu_k + w_k$
 - F : transfer matrix
 - **D** B : relates the controls to x_k
 - $\Box u_k$: control vector
 - \square w_k : the process noise vector
 - noise in state of the system.
 - w_k : random variable N(0;Q_k).

Kalman Filter (continued)

 \Box Measurement states z_k

 $z_k = H_k x_k + v_k$

- $\Box H_k : \text{ relates } x_k \text{ to } z_k$
- \Box v_k : measurement noise

a random variable with N(0; R_k).

Kalman Filter (continued)

Predict

$$x_{k}^{-} = Fx_{k-1} + Bu_{k-1} + w_{k}$$
$$P_{k}^{-} = FP_{k-1}F^{T} + Q_{k-1}$$

 $\square P_k$: error covariance

Kalman Filter (continued)

🗆 Update

$$K_{k} = P_{k}^{-}H_{k}^{-}(H_{k}P_{k}^{-}H_{k}^{T} + R_{k})^{-1}$$
$$x_{k} = x_{k}^{-} + K_{k}(z_{k}^{-} - H_{k}x_{k}^{-})$$

 $P_k = (I - K_k H_k) P_k^-$

K_k: Kalman gain
weight to assign to new information

Kalman Filter Implementation Details

$$x = \begin{bmatrix} x \\ y \\ v_x \\ v_y \end{bmatrix}, \quad F = \begin{bmatrix} 1 & 0 & dt & 0 \\ 0 & 1 & 0 & dt \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$z = \begin{bmatrix} z_x \\ z_y \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Questions and Discussion