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Recentfindings identifiedelectroencephalography (EEG)microstates
as the electrophysiological correlates of fMRI resting-state networks.
Microstates are defined as short periods (100 ms) during which the
EEG scalp topography remains quasi-stable; that is, the global
topography is fixed but strength might vary and polarity invert.
Microstates represent the subsecond coherent activation within
global functional brain networks. Surprisingly, these rapidly chang-
ing EEG microstates correlate significantly with activity in fMRI
resting-state networks after convolution with the hemodynamic
response function that constitutes a strong temporal smoothing
filter. We postulate here that microstate sequences should reveal
scale-free, self-similar dynamics to explain this remarkable effect and
thus that microstate time series show dependencies over long time
ranges. To that aim, we deploy wavelet-based fractal analysis that
allows determining scale-free behavior. We find strong statistical
evidence that microstate sequences are scale free over six dyadic
scales covering the 256-ms to 16-s range. The degree of long-range
dependency ismaintainedwhen shuffling the localmicrostate labels
but becomes indistinguishable from white noise when equalizing
microstate durations, which indicates that temporal dynamics are
their key characteristic. These results advance the understanding of
temporal dynamics of brain-scale neuronal network models such as
theglobalworkspacemodel.Whereasmicrostates can be considered
the “atoms of thoughts,” the shortest constituting elements of cog-
nition, they carry a dynamic signature that is reminiscent at charac-
teristic timescales up tomultiple seconds. The scale-free dynamics of
the microstates might be the basis for the rapid reorganization and
adaptation of the functional networks of the brain.
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The human brain is intrinsically organized into interconnected
neuronal clusters that form large-scale neurocognitive net-

works (1, 2). These networks have to dynamically and rapidly re-
organize and coordinate on subsecond temporal scales to allow the
execution of mental processes in a timely fashion (3, 4). Precise
timing is crucial for the government of the continuous information
flow from multiple sources to ensure perception, cognition, and
action and ultimately consciousness. The anatomical architecture
of several large-scale networks is well known and has been studied
with different methods ranging from tracer studies to resting-state
fMRI (5, 6). However, much less is known about their underlying
temporal dynamics.
Multichannel electroencephalography (EEG) is a key method

to access real-time information about the function of large-scale
neuronal networks with high temporal resolution. Traditionally,
spontaneous EEG analysis relies mainly on the power variation
in different frequency bands at a subset of electrodes; however,
observing this variation inherently sacrifices temporal accuracy
due to the time-frequency uncertainty principle. To account for
short-lasting fluctuations of neuronal activity, analysis methods in
the time domain are required. Lehmann and coworkers proposed
to consider the temporal evolution of the topography of the scalp
electric field, because it represents the sum of all momentarily
active sources in the brain, irrespective of their frequency. This

way, one obtains a global measure of momentary brain activity with
high temporal resolution. The topography does not change ran-
domly and continuously over time, but remains stable for ~80–120
ms; these periods of quasi-stability are termed “EEG microstates”
(7, 8).Cognition (9) and perception (10, 11) have been found to vary
as a direct function of the prestimulus microstate, and microstates
can characterize qualitative aspects of spontaneous thoughts (12,
13). This result indicates that they index different types of mental
processes. Surprisingly, only four different microstates are consis-
tently observed at rest (14). They reproduce well across subjects and
can be identified across the entire life span (15), indicating that they
might be mediated by predetermined anatomical connections.
Alterations of microstates have been reported in schizophrenia (16,
17), depression (18), and Alzheimer’s disease (19, 20) and as
a function of drug administration and hypnosis (21–23).
Recent work (24, 25) revealed a link between the rapid changes

in the time courses of EEG microstate sequences on the one hand
and slow coherent changes in the blood oxygen-level–dependent
(BOLD) signal obtained with fMRI during rest on the other hand.
More precisely, we identified the four prototypical EEG micro-
states during rest that each could explain one large-scale resting-
state network (RSN)obtained fromBOLD fMRI (25). Thisfinding
indicates that the EEG microstates are strong candidates for the
electrophysiological signatures of these RSNs. At first sight, this
link is surprising due to the different timescales at which both
signals are meaningful, i.e., 50–100 ms for EEG microstates vs. 5–
10 s for BOLD fMRI. The connection between EEG microstates
and fMRI RSNs was etablished by convolving the time courses
of the occurrence of the different EEG microstates with the he-
modynamic response function (HRF) and then using these as re-
gressors in a general linear model for conventional fMRI analysis,
as illustrated in Fig. 1A. Because theHRF acts as a strong temporal
smoothing filter on the rapid EEG-based signal, it is remarkable
that statistically significant correlations can be found. The fact that
this smoothing did not remove any information-carrying signal
from the microstate sequence and that furthermore the original
microstate sequences and the regressors show the same relative
behavior at temporal scales about two orders of magnitude apart
suggests that the time courses of the EEG microstates are scale
invariant. The working hypothesis of this paper is that the micro-
state dynamics have fractal properties. We investigated whether
they show statistically self-similar, scale-free properties over a large
time range, which preserves their information after smoothing with
the hemodynamic filter as shown in Fig. 1B.
Several complex structures in nature manifest fractal behavior:

Statistically the object looks the same on a wide range of ob-
servation scales. Fractals are most commonly associated with 2D
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artificial or natural geometric objects like Mandelbrot sets or
fern leaves. One-dimensional time courses can also show self-
similarity, which has often been associated with a critical state
due to the lack of a characteristic scale. Quantitative assessment
of fractal behavior was intensively studied in the 1980s (26). The
most notable examples are distinct fractal properties of coding
and noncoding parts of human DNA sequences (27) and changes
of heartbeat dynamics related to pathological conditions (28, 29).
Monofractal behavior can be characterized by a single parame-
ter, the Hurst exponent, which is a measure of the extent of long-
range dependency. Clearly, pure monofractality imposes a strong
constraint, which is why experimental data are often explained by
multifractal models at the expense of additional parameters, the
so-called higher-degree cumulants.
The investigation of scale-free organization in the brain has been

a long-standing research topic, related both to anatomy (30, 31) and
to function (32–36). Many studies have characterized the fractal
properties of local aspects of EEG temporal dynamics, namely of
amplitude modulations at single electrodes (37–40); these proper-
ties have been linked to cognitive tasks (41), sleep (42–44), and
clinical conditions such as epilepsy (45, 46), Alzheimer’s disease (47,
48), mania (49), dementia (50), and schizophrenia (51). Whereas
these studies indicate that the fractal characterization of electric
potential time series can be a useful measure of local brain activity,
they cannot be related to the temporal properties of global brain
networks. In contrast, the EEG microstates are measures of the
global brain activity and are directly correlated with the fMRI
RSNs. Therefore, fractal behavior of microstate alterations would
directly demonstrate scale-free properties of the temporal dynamics
of large-scale neuronal networks.
To this end we here investigate in detail whether the time series

of the EEG scalp topography—the sequence of the four dominant
EEG microstates—reveal scale-free dynamics. Previous research
has shown short-range dependency in the time series of EEG
microstates (52) and their alteration in schizophrenia (53), but
their long-range dependency and potentially scale-free dynamics
have never been investigated. To that aim, we deploy a wavelet
analysis framework that is able to distinguish between mono- and
multifractal behavior. In the light of the previous connection with
fMRI RSNs, we analyze EEG recorded inside the MR scanner.
Cleaning the EEG recorded inside the MR scanner involves
several filtering steps, which could in principle induce long-range
dependency. To rule this out, we investigate the effects of filtering
on EEG recorded outside the scanner for both the original and
the temporally permuted data. We then study how microstate
sequence modifications alter the dynamics to establish the key

microstate characteristics. Finally, we discuss the implications of
our results for temporal dynamics of neuronal models.

Results
Fig. 2 depicts the steps of the fractal analysis. First, we segment the
EEG into microstate sequences (Fig. 2A). Second, we split the
sequences of microstate labels (i.e., the time series of their occur-
rence) into the three possible bipartitions (1, 2 vs. 3, 4; 1, 3 vs. 2, 4;
and 1, 4 vs. 2, 3; Fig. 2B). Third, we construct three randomwalkers
corresponding to these bipartitions: The walker steps either up
(+1) or down (−1), depending on the partition label. In other
words, we generate the cumulative sum of the bipartition labels
(Fig. 2C). Our analysis aims at characterizing the type of correla-
tions that occur in such a random walk, i.e., short range (as in
Markov models) vs. long range (as in scale-free phenomena). For
this evaluation, we examine the displacement X(n) of the random
walk aftern steps. InFig. 2D, the randomwalk is observedat various
scales showing similar time courses. Fourth, we analyze the random
walk signal with the wavelet transform (Fig. 2E), which is the nat-
ural tool to study fractality due to the intrinsic scale invariance of
the wavelet basis functions and its ability to deal efficiently with
nonstationary signals; here, we use orthogonalDaubechieswavelets
with five vanishing moments (54). The wavelet coefficient at dyadic
scale j and position k reflects the imprint of the random walk em-
bedding on the dilated and shifted wavelet function ψ (t/2j−k) and
canbe computed efficiently using thefilterbank algorithm (55).One
reminiscent feature of scale-free behavior is the linear relationship
(in the log scale) between the energy of the wavelet coefficients and
scale j, which can be plotted in the log-scaling diagram (Fig. 2F).
Finally, on the basis of the fitting region in the log-scaling diagram,
that is, where the power law holds, the scaling spectrum can be
determined (Fig. 2G) to extract the fractal signature and various key
parameters, in particular the Hurst exponent for monofractal be-
havior (characterized by the slope of a linear scaling spectrum) and
higher-degree cumulants for multifractal behavior.
We found that all random walk embeddings associated with

EEG microstate sequences show clear power laws over six dyadic
scales that cover two orders of magnitude between 256 ms and
16 s. Fractal analysis is performed on this fitting region (see Fig.
S1 for the group-level log-scaling diagrams). The lower bound of
the fitting region can be explained by the lowest scale at which
microstate alterations become “visible” to the analyzing wavelet
function. The choice of the bipartitioning of the microstate labels
did not yield any statistically significant changes in the outcome
of the fractal parameters (Fig. S2).

A B

Fig. 1. (A) Illustration of the link between
EEG microstates and their manifestation at
the fMRI level. Our recent work (25) showed
that after convolution of the EEG microstate
sequences with the hemodynamic response
function, which introduces a strong tempo-
ral smoothing, the resulting signals corre-
late significantly with large-scale RSNs. (B)
To investigate the intriguing link between
microstate sequences at the EEG and fMRI
level, we study the fractal properties of their
random walk embedding. Scale-free dy-
namics or statistical self-similarity is reflec-
ted by the same behavior of the random
walk at various timescales.
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Fig. 3 shows theHurst exponentH for the individual subjects for
the data recorded inside the scanner (black bars). We found scale-
free behavior with long-range dependency (H > 0.5, P < 0.05) for
every individual. To confirm the monofractality of the microstate
sequences, we also analyzed additional fractal parameters (higher-
degree cumulants c2 and c3) that allow departures from “pure”
self-similarity according to the multifractal model. This analysis
confirmed that the microstate dynamics are indeed monofractal:
The results and the group-level statistics are listed in Table S1.
Furthermore, the scaling spectra at the group level reflect a re-
markably accurate linear behavior, a clear indication for mono-
fractality; they are shown in Fig. S3. In addition, Fig. 3 shows the
Hurst exponent for the individual subjects for the data recorded
outside the scanner as a function of both filtering and temporal
permutation. We found comparable measures of monofractality
for the original nonfiltered and filtered data (H> 0.5, P< 0.05; Fig.
3, blue bars). However, long-range dependency is completely
eliminated after temporal permutation of the original EEG data.
The corresponding microstate sequences behave like white noise
for the permuted nonfiltered and filtered data (H = 0.5; Fig. 3,
green bars). An overview of the fractal parameters and statistical
analysis is listed in Table S1.
For the data recorded inside the scanner, we then altered the

microstate sequence to investigate the relative importance of the
sequence of microstate labels and durations on their monofractal
signature. First, we randomly shuffled the microstate labels while
preserving the duration. The resulting sequences are still signif-
icantly monofractal with no significant change in long-range
dependency (Fig. 4, bars with light shading) for every individual;
the group statistics are summarized in Table S2. This result in-
dicates that the sequence of labels is not crucial for long-range
dependency. Second, we preserved the original microstate se-
quence while equalizing the microstate duration to investigate
the effect of timing. The resulting sequences are indistinguish-
able from white noise (H = 0.5; Fig. 4, open bars) for every
individual; the group statistics are summarized in Table S2. This
result indicates that the correct timing is the crucial parameter
for the monofractal signature.

Discussion
We investigated the scale-free dynamics of a measure of global
brain state, i.e., time courses of EEGmicrostates. This investigation
was motivated by the recent connection made between rapid EEG
microstates and the slow fMRI RSNs. They are two global meas-
ures of overall brain activity that can be assessed on very fast and
very slow temporal scales, respectively (25). We found strong sta-
tistical evidence of monofractal behavior of the EEG microstate
alterations spanning six dyadic scales or two orders of magnitude
(256 ms to 16 s), i.e., spanning the timescales characteristic of EEG
microstate changes and fMRI BOLD oscillations. This finding
provides the explanation for how information that can be observed
at such different timescales is intertwined. Monofractal behavior
also implies nonstationarity, which is a well-known feature of EEG
data (56). Recent work relating RSNs observed by magneto-
encephalography (MEG) and BOLD fMRI suggested coexistence
of nonstationary (MEG) and stationary (fMRI) processes on
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Fig. 2. Illustration of the wavelet
fractal analysis. (A) The microstate
sequence over a short period. (B)
Microstates are partitioned into two
classes and associated with a positive
and a negative step, respectively. (C)
Random walk embedding by the cu-
mulative sum of B until each time
point. (D) The complete random walk
embedding of a resting-state re-
cording at various timescales. Similar
time courses are obtained when ob-
serving the signal at different scales.
(E) Color-coded wavelet transform
of the random walk embedding.
Brighter colors indicate larger mag-
nitude of the wavelet coefficients.
The x axis represents time (3 min),
and the y axis specifies scale (from
~256 ms to 16 s, top to bottom). The
pointers indicate the approximate
timescales of EEG and fMRI. The
evolution of several measures of the
wavelet coefficients over scale (e.g.,
the structure function of Eq. 2) pro-
vides us with a comprehensive way to
study fractal behavior. For illustration
purposes, the continuous wavelet
transform is shown (scale varies con-
tinuously); the fractal wavelet analy-
sis needs only discrete dyadic scales. (F) The power-law behavior of the wavelet coefficients is verified using the log-scaling diagram. (G) The scaling spectrum
allows us to identify the signature of mono- and multifractality.
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of the estimate over sessions and possible bipartitions of the microstates.
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similar anatomical substrates (57). However, the present findings
show that scale-free dynamics cover timescales from (fast) EEG
to (slow) fMRI, suggesting that the information at both scales
reflects the same (nonstationary) underlying physiological process.
This result also extends the finding that synchronization metrics
during rest between different channels in MEG and between brain
regions in fMRI show power law scaling behavior (62).
We could rule out that the long-range dependency is an artifact

of temporal filtering. We actually found stronger long-range de-
pendency for nonfiltered than for filtered data. We further
showed that temporal permutation removes all long-range de-
pendency from the data. Finally, filtering of the permuted data
does not reinstate long-range dependency. This result shows that
filtering in the temporal domain does not induce long-range de-
pendency in the microstate sequence. On the contrary, temporal
filtering reduces rather than induces the long-range dependency.
We further investigated whether the local sequence or the timing
of the microstates is crucial for their monofractal signature and
performed fractal analysis of modified microstate sequences. The
shuffled microstate labels (with preserved durations) maintained
monofractal behavior (H > 0.5, P < 0.05) that was not significantly
different from the original sequence. The duration-equalized se-
quence (with preserved microstate labels) behaved like white
noise. On the basis of these results, we state that microstate du-
ration is the most crucial constitutive parameter; without this
parameter, long-range dependency is absent. This result is per-
fectly in line with the notion that precise timing is crucial for the
government of the constant information flow the brain has to deal
with at every instant to enable perception, cognition, and ulti-
mately consciousness. This result also confirms previous studies
about microstate changes in schizophrenia that mainly affect the
microstates’ duration (53). It also corroborates the fact that
modeling microstate syntax needs to go beyond short-range
interactions such as modeled by n-step Markov chains (52).
Scale-free dynamics of microstate sequences imply non-

stationarity of the underlying brain activity. Indeed, spontaneous
EEG makes an ideal candidate to observe this type of phenome-
non; any kind of averaging such as for evoked potentials would
destroy the fractal structure of the data. Moreover, self-similarity is
also closely related to the notion of universality and self-organized
criticality; i.e., scale-free dynamics arise only when neuronal sys-
tems reach a critical point (33, 58). An efficient quantification of the
critical state could also contribute to characterizing phase tran-
sitions related to neurological conditions (59) and as an essential
prerequisite for learning (60), inspired by modification of func-
tional connectivity as observed by fMRI (61).Moreover, this type of

analysis opens a multitude of possibilities for future research based
on the fractal signature of microstate sequences.
One characteristic feature of EEG microstates is the rapid

transition from one scalp field topography into another, leading
to the hypothesis that they constitute the “basic building blocks
of cognition” or “atoms of thought” that underlie spontaneous
conscious cognitive activity (63, 64). Moreover, during rest, four
dominant microstates are systematically observed as confirmed
by a comprehensive study of 496 subjects (15). This hypothesis
also fits well with the concept of the neuronal workspace model
of consciousness (65, 66), a link that was recently proposed (67).
The spontaneous fluctuations of electrical activity characterized
by microstates provide a compelling explanation for top–down
processing as opposed to the classical bottom–up view of brain
function. The observed fractal behavior of microstates sheds
a unique light on intrinsic temporal dynamics of the neuronal
workspace model, which have remained unexplored. Indeed,
scale-free dynamics provide an organizing mechanism (68) for
a complex system like the brain to operate far from homeostatis
and to flexibly govern the incessant information flow from mul-
tiple sources—being close to the critical state of the system
enables it to reconfigure with a high degree of responsiveness.
In addition, fractal properties of synchronized activity between

brain regions (69) have been at the basis of “operational modules”
in the sense (70) that they are embedded at various temporal
scales; i.e., modules covering large cortical networks are suppos-
edly active during short durations whereas small modules are as-
sociated with small local networks (involved in more complex
tasks). However, instead of these modules being active at different
frequency oscillations, functional microstates and their fractal
organization turn them into ideal candidates for a universal rep-
resentation that is reminiscent of a wide range of temporal scales.

Conclusions
We uncovered scale-free dynamics of EEG microstates over six
dyadic scales covering two orders of magnitude during the awake
resting state. This finding provides a compelling explanation of
how rapidly changing microstates as measured by EEG are linked
to intrinsic brain activity of RSNs asmeasured by fMRI (71). It also
suggests that the brain is a complex system that operates far from
homeostatis, which enables it to adapt to incoming information by
an ultimate integration of activity at different temporal scales. We
hope that this work will stimulate future research to disentangle
the basics of cognition and consciousness (72).

Materials and Methods
Subjects and Procedure. Nine healthy right-handed individuals participated
for monetary compensation after giving informed consent approved by the
University Hospital of Geneva Ethics Committee. None suffered from current
or prior neurological or psychiatric impairments or claustrophobia. Mean age
of participants was 28.37 y (range 24–33 y).

We first recorded one session of 5 min outside the scanner and then three
resting-state sessions of 5 min each inside the MRI scanner. Subjects were
instructed to relax (eyes closed) and refrain from falling asleep. We also
indicated to them to move as little as possible. Subsequent self-report and
inspection of sleep pattern of the EEG led to the exclusion of one subject. The
data of eight subjects were subjected to further analysis.

The EEG was recorded from 64 sintered Ag/AgCl ring electrodes mounted
in an elastic cap (EasyCaps; Falk Minnow Services) and arranged in an ex-
tended 10–10 System. Electrodes were equipped with an additional 5 kΩ in
series resistor, and impedances were kept below 15 kΩ. The EEG was ac-
quired with a band pass filter between 0.016 and 250 Hz and digitized at 5
kHz, referenced online to the midline frontal-central electrode (FCz) using
a battery-powered MRI-compatible EEG system (BrainAmp MR plus; Brain-
products). The ECG was recorded from a bilateral montage above and below
the heart from sintered Ag/AgCl electrodes with an additional 15-kΩ resistor
and digitized like the scalp EEG using a BrainAmp ExG MR amplifier. The EEG
amplifier along with a rechargeable power pack was placed ~15 cm outside
the bore. The amplified and digitized EEG signal was transmitted to the
recording computer placed outside the scanner room via fiber optic cables.
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Fig. 4. Hurst exponent for the different subjects (data recorded inside the
scanner) using original, shuffled, and equalized microstate sequences. The
error bars indicate the SD of the estimate over sessions and possible bipar-
titions of the microstates.

18182 | www.pnas.org/cgi/doi/10.1073/pnas.1007841107 Van De Ville et al.

www.pnas.org/cgi/doi/10.1073/pnas.1007841107


EEG Data Processing. For the data recorded inside the scanner, the gradient
artifacts were removed using a sliding average (73) of 21 averages and sub-
sequently, the EEG was down-sampled to 500 Hz and low-pass filtered with
a finite-impulse reponse filter with a bandwidth of 70 Hz. The ballisto-
cardiogram [Bacille Calmette-Guérin (BCG)] artifact was removed by first us-
ing a sliding average procedure with 11 averages (74) and then applying
independent component analysis (ICA) to remove residual BCG along with
oculo-motor components. The so-cleaned EEG was then band-pass filtered
between 1 and 40 Hz with a Butterworth IIR filter with a roll-off of 48 dB/
octave and further downsampled to 125 Hz.

The data recorded outside the scanner were first down-sampled from 5 kHz
to 500 Hz. We used ICA to remove oculo-motor artifacts when necessary and
finally, we band-pass filtered the EEG with the same Butterworth IIR filter and
further down-sampled it to 125 Hz.

Microstate Analysis. We first determined the maxima of the global field
power (GFP). Because topography remains stable around peaks of the GFP,
they are the best representative of the momentary map topography in terms
of signal-to-noise ratio (15). All maps marked as GFP peaks (i.e., the voltage
values at all electrodes at that time point) were extracted and submitted to
a modified spatial cluster analysis using the atomize-agglomerate hierar-
chical clustering (AAHC) method (75) to identify the most dominant map
topographies (10). The optimal number of template maps was determined
by means of a cross-validation criterion (76). We then submitted the tem-
plate maps identified in every single subject into a second AAHC cluster
analysis to identify the dominant clusters across all subjects. Fig. S4 shows
the template maps for the different subjects for the recordings. Finally, we
computed a spatial correlation between the templates identified at the
group level and those identified for each subject in every run. We so labeled
each individual map with the group template it best corresponded to, to use
the same labels for the subsequent group analysis.

We computed the spatial correlation between the four templatemaps and
the instantaneous EEG (77) using a temporal constraint criterion of 32 ms.
We then used these spatial correlation time courses to select the dominant
microstate m(k)∈{1,2,3,4} at each time instant k and submitted those time
series to the fractal analysis.

For the analysis using nonfiltered data recorded outside the scanner, we
used spatial correlation between the original nonfiltered EEG (sampled at 500
Hz) and the templatemaps (derived from the down-sampled andfiltered data
recorded outside the scanner) and then submitted those time series to fractal
analysis.We also temporally permuted the nonfiltered EEG and computed the
spatial correlation between the permuted nonfiltered data and the same
template maps followed by fractal analysis. Finally, we applied the same fil-
teringas that for thedata recorded inside to thepermuteddataandcomputed
the spatial correlation using the template maps followed by fractal analysis.

Fractal Analysis. Monofractal behavior imposes a scaling property on the
process X(t) that can be characterized by a single parameter known as the
Hurst exponent H. Specifically, self-similarity implies that the process X(t)
and τHX(t/τ) are distributionally indistinguishable for all scaling factors τ >
0 (78). The Hurst exponent assesses the degree of temporal dependence; i.e.,
for 0 < H < 0.5 the process is considered to have short-range dependency, for
H = 0.5 increments are uncorrelated, and for 0.5 < H < 1 long-range de-
pendency is observed.

The wavelet transform analyzes the signal under investigation in terms of
dilated and shifted wavelet basis functions ψ(t/a−k). Wavelets also have
a number of vanishing moments, which render them insensitive to low-
frequency trends. The wavelet coefficient at scale a and position k of a signal
X(t) is given by

dX ða; kÞ ¼ 1
a

ð
XðtÞψ

� t
a
− k

�
dt: [1]

Advanced methods for fractal analysis have been based on the continuous
wavelet transform; that is, the scale parameter a is (at least conceptually) not
discretized, and the traces of the modulus maxima of the wavelet coef-

ficients through scale are characteristic of the fractal signature (79). More
recently, the framework of wavelet leaders (80, 81) provides an efficient and
numerically robust method based on the discrete wavelet transform, which
considers wavelet coefficients only at fixed dyadic scales a = 2j. We denote
dyadic scales a = 2j by the exponent j as a shorthand.

On the basis of the wavelet coefficients, we can compute the structure
function associated with a power exponent q ∈ ℤ as

SðdX ; j; qÞ ¼ 1
nj

∑
nj

k¼1

����dX ð2j; kÞ
����
q

; [2]

where nj is the number of wavelet coefficients available at scale j. Wavelet
leaders (80) allow us to estimate the structure function in a stable way even
for negative powers q. For monofractal processes, it has been shown that
the structure function derived as such should follow a power law as

SðdX ; j; qÞ ¼ Cq2jqH ; for q ∈
�
q−
∗ ; qþ∗

�
; [3]

where H is the Hurst exponent defined before. Monofractality is a very
demanding model because a single parameter H characterizes the whole
process through scale. Therefore, multifractality is an extended model to
describe more complex forms of statistical self-similarity. Specifically, the
scaling exponent of the structure function can be generalized as

SðdX ; j; qÞ ¼ Cq2jζðqÞ; [4]

where ζ(q) has a concave shape instead of the linear behavior qH observed
with monofractality. The characteristic function ζ(q) is commonly parame-
terized as a polynomial

ζðqÞ ¼ ∑
∞

p¼1
cp
qp

p!
; [5]

where the coefficients cp are termed pth degree log-cumulants; c1 corre-
sponds to the convential Hurst exponent H. The advantage of the multi-
fractal framework is that monofractal behavior can be asserted by
evaluating the higher-degree log-cumulants cp, p ≥ 2.

To perform fractal analysis ofmicrostate sequences, we need to embed the
sequence into a random walk; the procedure is illustrated in Fig. 2. Com-
parable to self-similar analysis of DNA sequences, we first partition the mi-
crostate sequence m(k) into two classes (e.g., C1 = {1,2}, C2 = {3,4}) and then
generate the cumulative sum

XðnÞ ¼ ∑
n

k¼1
uðkÞ;

where u(k) = +1, for m(k) ∈ C1, and u(k) = −1, for m(k) ∈ C2. The three possible
embeddings are considered (C1 = {1,2}, C1 = {1,3}, and C1 = {1,4}). Next, the ran-
dom walk embedding X(n) is analyzed using Daubechies’ orthogonal wavelet
transform with five vanishing moments, which means the wavelet coefficients
are insensitive to low-frequency trends equivalent to fourth-degree poly-
nomials. The scaling spectrumwas analyzed for power exponentsq in the range
[−5,5]and log-cumulantsupto thirddegree.Weverifiedtheeffectof the choice
of bipartitioning on the fractal parameters (Fig. S2), using aWilcoxon rank sum
test. The results for the individual subjects (Fig. 4) show the SD over session and
possible bipartitions. Statistical significance at the group level (Table S1) is de-
termined using the nonparametric two-sided sign test (82).
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