How to build a brain
Cogsci 2010 Tutorial

Terry Stewart & Chris Eliasmith
Centre for Theoretical Neuroscience
University of Waterloo
There are animals
Who behave brains think?
Which we want to model

Path integration

Neural binding
Compelling reasons for neurons

- Better contact with more data (single, multi-electrode, LFP, fMRI, ERP, behavioural, etc.)
- Explanations for previous assumptions (e.g. Why a 50ms time step? Why limited productivity? etc.)
- Wider range of manipulations (e.g., brain damage, genetic alteration, degeneration, stimulation, etc.)
- Others? (Neurons limit computational alternatives, neurons impose dynamic constraints, anatomy imposes topological constraints, etc.)
Today

- Introduction
 - Who we are
 - Who you are, why you’re here
- Six topics (theory followed by hands-on simulation)
 1. 1D representation
 2. linear transformation
 3. nonlinear transformation
 4. dynamics
 5. symbol manipulation
 6. applications (time permitting)

Please Interrupt!
Neural Engineering Framework (NEF)

Given:
- Information processing task
- Hardware description

Produce:
- Neural mechanism
A theory, like Newton’s theory of motion:

- Three basic principles
- Representation, Transformation, Dynamics
- General, unified approach
- Quantitative
- Wrong!
Representation

- Lossless code (e.g. Morse code):
 - Encoding: \(a = f(x) \)
 - Decoding: \(x = f^{-1}(a) \)

- Otherwise (e.g. A/D conversion):
 - Decoding: \(\hat{x} = g(a) \approx f^{-1}(a) \)
Principle 1: Representation

Neuron Tuning Curve

B

- Firing Rate (Hz)
- e = -1
- gain

A

- Firing Rate (Hz)
- e = 1
- bias

Bob

Alice

Charlie
More specifically, we know:

\[J(x) = \alpha x + J^{bias} \]

So

\[a_i(x) = G_i \left[\alpha x + J^{bias} \right] \]

\(G_i \) can be any neural model:

- conductance; rate; leaky integrate-and-fire (LIF)
Leaky integrate-and-fire (LIF) model

Outside the Neuron

Voltage Controlled Gate

refractory period

Voltage

V_{th}

 время (мс)

0 20 40 60 80 100

0 0.2 0.4 0.6 0.8 1

Phospholipid layer containing proteins

Transmembrane protein

Ion Channel

C

current from dendrites

Inside the Neuron
Principle 1: Representation

- Need two procedures to define representation
 - encoding (stimulus -> spikes)
 - decoding (spikes -> stimulus; ‘theoretical’)

Nonlinear Encoding
Linear Optimal PSC Decoding
Typical PSCs

\[\frac{1}{\tau} e^{-t/\tau} \]

Optimal linear decoding

- Linear:

\[\hat{x} = \sum_{i} a_i(x) \phi_i \]

- Note: Must know tuning curves, \(a_i \)

- Q: How to find decoders?

- A: Minimize \(\langle (x - \hat{x})^2 \rangle_x \)
Sources of Noise

- Axonal jitter
- Neurotransmitter vesicle release failures
- Different amount of transmitter in each vesicle
- Thermal noise (minor)
- Ion channel noise (the number of channels open or closed fluctuates)
- Network effects

See also http://diwww.epfl.ch/~gerstner/SPNM/node33.html
So, we must consider the decoding under noise:

\[
\hat{x} = \sum_{i=1}^{N} (a_i(x) + \eta_i) \phi_i
\]

Hence, minimize

\[
\left\langle (x - \hat{x})^2 \right\rangle_{x, \eta_i}
\]
Brain stem

- The neural integrator represents eye position
NPH and Vestibular nuclei
Population tuning

Activities

Distortion

- Encoding
- Decoding

Graphs showing population tuning with plots for activities and distortion.
Error with/without noise

(a) Square error vs. number of neurons

(b) Square error vs. number of neurons for different models