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• Large Language Models (LLMs) perform well on pattern-based tasks, 

but often fail on problems that require strict rule-following, such as 

mathematical reasoning.

• These models can generate inconsistent or incorrect outputs due to 

unstructured internal representations.

• Symbolic reasoning systems provide precision and reliability but lack 

flexibility and scalability in real-world tasks.

• This work introduces a neurosymbolic method that combines the 

strengths of both paradigms.

• The proposed approach achieves:

• 15.4× more problems solved and 88.6% lower loss on 

mathematical reasoning tasks compared to Chain-of-Thought 

and LoRA baselines.

• No performance loss on general or out-of-distribution problems.
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CONCLUSION

• Our neurosymbolic method combines the strengths of LLMs and 

symbolic reasoning to perform structured, rule-based reasoning.

• On arithmetic tasks like Mod, Mult., LCM, and Bitwise f, the 

Neurosymbolic (NS) LLM outperforms baselines by large margins.

• On unseen problems (Addition, Integer Division), the NS LLM 

performs on par with the standard LLM since no intervention is 

triggered when the problem type is unseen during training.
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Representations

METHODS

• Prompt the LLM with different math problems.

• Train encoder to map LLM hidden states into structured neurosymbolic 

vectors.

• Apply symbolic algorithms to compute the solution outside the LLM.

• Train and fine-tune decoder to map the result back into the LLM's 

hidden state to steer its behavior.

ENCODING ACCURACY

• The encoder generates the most accurate encoding in the middle layers   

of the model, achieving under 2% classification error at layer 17.

SELECTIVE ACTIVATION

• The neurosymbolic intervention only occurs when the model is confident 

the prompt is similar to the problems it has seen during training.

• Similarity is calculated by querying the encoded representation with the 

problem type. The average similarity of queries is:

• ≈ 1 for math problems seen during training.

• ≈ 0.65 for math problems not seen during training.

• ≈ 0.35 for non-math problems not seen during training.

• LLM hidden states are converted into Vector Symbolic Algebra (VSA) 

representations, which allow for monosemantic concepts to be composed 

into one neurosymbolic vector, e.g.:
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• Our approach greatly increases the 

performance of LLMs on mathematical 

reasoning tasks (15.4 more problems 

solved and 88.6% lower loss), while not 

affecting their behavior on other tasks.

• Unlike traditional black-box LLMs, our 

method offers interpretability:  

neurosymbolic vectors expose LLM  

intermediate structure.
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