

Improving Rule-based Reasoning in LLMs using Neurosymbolic Representations

Varun Dhanraj, Chris Eliasmith (vdhanraj, celiasmith)@uwaterloo.ca Centre for Theoretical Neuroscience, University of Waterloo

INTRODUCTION

- Large Language Models (LLMs) perform well on pattern-based tasks, but often fail on problems that require strict rule-following, such as mathematical reasoning.
- These models can generate inconsistent or incorrect outputs due to unstructured internal representations.
- Symbolic reasoning systems provide precision and reliability but lack flexibility and scalability in real-world tasks.
- This work introduces a neurosymbolic method that combines the strengths of both paradigms.
- The proposed approach achieves:
 - 15.4× more problems solved and 88.6% lower loss on mathematical reasoning tasks compared to Chain-of-Thought and LoRA baselines.
 - No performance loss on general or out-of-distribution problems.

MAIN RESULTS

- On arithmetic tasks like Mod, Mult., LCM, and Bitwise f, the Neurosymbolic (NS) LLM outperforms baselines by large margins.
- On unseen problems (Addition, Integer Division), the NS LLM performs on par with the standard LLM since no intervention is triggered when the problem type is unseen during training.

Model Performance Across Problem Types

SELECTIVE ACTIVATION

- The neurosymbolic intervention only occurs when the model is confident the prompt is similar to the problems it has seen during training.
- Similarity is calculated by querying the encoded representation with the problem type. The average similarity of queries is:
 - \approx 1 for math problems seen during training.
 - ≈ 0.65 for math problems not seen during training.
 - ≈ 0.35 for non-math problems not seen during training.

CREATING NEUROSYMBOLIC REPRESENTATIONS

• LLM hidden states are converted into Vector Symbolic Algebra (VSA) representations, which allow for monosemantic concepts to be composed into one neurosymbolic vector, e.g.:

What is 910 mod 213?

<u>n1</u> * (hundreds * 9 + tens * 1 + ones * 0) +

<u>n2</u> (hundreds (*) 2 + tens (*) 1 + ones (*) 3) +

problem type * modulo

METHODS

- Prompt the LLM with different math problems.
- Train encoder to map LLM hidden states into structured neurosymbolic vectors.
- Apply symbolic algorithms to compute the solution outside the LLM.
- Train and fine-tune decoder to map the result back into the LLM's hidden state to steer its behavior.

ENCODING ACCURACY

• The encoder generates the most accurate encoding in the middle layers of the model, achieving under 2% classification error at layer 17.

CONCLUSION

- Our neurosymbolic method combines the strengths of LLMs and symbolic reasoning to perform structured, rule-based reasoning.
- Our approach greatly increases the performance of LLMs on mathematical reasoning tasks (15.4 more problems solved and 88.6% lower loss), while not affecting their behavior on other tasks.
- Unlike traditional black-box LLMs, our method offers interpretability: neurosymbolic vectors expose LLM intermediate structure.

GitHub Repository