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Abstract

Central pattern generators (CPGs) have traditionally been modeled as sets of cou-
pled bistable oscillators [2]. We present a framework for constructing models which
avoid the shortcomings of these traditional models, while remaining biologically
plausible. We demonstrate our approach by generating a novel model of lamprey
locomotion. However, we suggest that the methods presented here can be more gen-
erally applied to modeling any neural system which produces and controls dynamic
patterns of forces.
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1 Introduction

Repetitive behavioral patterns such as swimming, flying, chewing, breathing,
scratching and walking have long been a mainstay of motor research in neu-
roscience. A pivotal concept in the analysis of such rhythmic behavior is that
of the central pattern generator (CPG) [3]. A CPG is a group of neurons that
can produce rhythmic patterns without sensory input. It has been observed
that reciprocally connected networks with inhibitory weights (i.e. bistable os-
cillators) are able to produce CPG-like rhythmic patterns. Traditionally, it has
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been assumed that because such networks produce a behavior similar to that
seen in CPGs, they are good models of CPGs. However, there are a number
of difficulties with such phenomenological models. For example, Marder et al.
have shown that these networks in no way guarantee oscillations and often
produce synchrony: a deadly result for an organism [1]. As well, Wannier et
al. have noted that it is difficult to control the direction and frequency of the
oscillations arising from coupled networks of bistable oscillators - a common
model of leech and lamprey locomotion [6].

In the remainder of this paper, we present an alternative approach to modeling
CPGs. In the next section we describe a five step process which can be used as
a general methodology for constructing models of motor control systems. We
then apply this process to understanding lamprey locomotion. We argue that
given the strengths and successes of the resulting simulation, this methodology
might prove generally useful as a means of modeling neural systems which
generate dynamic force patterns.

2 A Five Step Process Used to Model Lamprey Swimming

The iterative five step process we apply in the remainder of this paper is as
follows:

(1) Determine the forces to be generated by the neural system; F (x, t)
(2) Define the representation to be used (via encoding and decoding rules);

F (x, t) =
∑
nAn(t)Φn(z)

(3) Create a set of dynamical equations that lead to the desired An(t),

dA

dt
= G (A(t),U(t), t) (1)

(4) Implement and test the model; and
(5) Redefine the representation and repeat 2-4 until the system is defined in

the space of neuronal activities.

As we use this method to construct a model of lamprey locomotion, we indicate
which step we are currently engaged in with a label in bold (e.g. Step 1).

Step 1 A simplified model of lamprey swimming leads to a model of the
tension given as

T (z, t) =κ[cos(ωt− 2πz/L)− cos(ωt))], (2)

where v = ω ∗ L/2π defines the velocity, L is the length of the lamprey,
and κ is a scaling parameter. This equation specifies the tensions which must
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be generated by the nervous system via the muscles. When the equation is
satisfied, the lamprey will swim in an anguilliform mode (i.e. with a traveling
wave).

Step 2 We now define a representation of this pattern of forces in terms of
temporal coefficients, An(t) and spatial harmonic functions Φn(z).

T (z, t) = κ
N∑
n=0

A2n(t) cos(2πnz) + A2n+1(t) sin(2πnz), (3)

where A0(t) = − cos(ωt), A1(t) = − sin(ωt), A2(t) = cos(ωt), A{n>2}(t) = 0.

Step 3 Using this representation we create a set of dynamical equations that
result in the desired An(t).

dA

dt
= M ·A(t) = [ωMω + Md + U(t)Ms] ·A(t). (4)

where

Mω =



0 1 0 0

−1
2

0 1
2

0

0 −1 0 0

0 0 0 0


, Md =



−α0 0 −α0 0

0 0 0 0

−α0 0 −α0 0

0 0 0 −α


, and Ms =



1
2

0 −1
2

0

0 1 0 0

−1
2

0 1
2

0

0 0 0 0


.

This equation is a simpler form of the general control dynamics equation (1).
We have broken down the transformation matrix M to give us precise control
over the dynamics of the model. In particular, Mω controls the steady state
oscillatory swimming dynamics; Md uses two rate constants, α0 to force the
first and third Fourier amplitudes to be equal in magnitude and opposite in
sign, and α to damp out high spatial frequencies; and Ms controls the start
up behavior of the lamprey by inducing exponential growth in the desired
amplitudes.

Step 4 Simulating this model results in the expected behavior. The lam-
prey swims in steady state with a traveling wave whose temporal frequency is
controlled by ω. As well, high frequency harmonics are damped out and the
wave’s amplitude increases exponentially to some desired value at startup as
controlled by U(t).

Step 5 Now that we have a simple working model, we 2-4, by projecting the
current representation to a more neurologically reasonable one.
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Step 5.2 To begin, we know that the control of muscles by the neural sys-
tem is local along the length of the lamprey. This means we have a spatially
segregated representation of the tension. To capture this aspect of lamprey
anatomy, we define a spatially segregated representation. We use Gaussian
functions to represent the tension over local regions (≈ σg) along the length
of the lamprey.

T (z, t) = κ
∑
m

am(t)φm(z) = κ
∑
m

am(t) exp(−(z −m ∗ dz)2/σ2
g), (5)

where am(t) is the amplitude of the mth Gaussian centered at the point zm =
m ∗ dz.

We can now construct the projection operator Γ by projecting our previously
constructed Fourier basis, Φn(z), onto our new Gaussian basis, φm(z) (i.e.
Γnm =

∫
Φn(z)φm(z)dz). This projection operator allows us to “move between”

the two representational spaces we have constructed.

Step 5.3 Next, we take advantage of Γ to transform the dynamical equations
for the Fourier amplitudes A(t) into dynamical equations in the space of the
Gaussian amplitudes a(t). We can write:

da(t)

dt
= m · a(t), where m = Γ−1MΓ. (6)

Because of the presumed redundancy in the Gaussian representation, Γ−1 is
the pseudoinverse of Γ.

Step 5.4 We can now simulate the lamprey’s swimming in the Gaussian
space using (6). Not surprisingly, the lamprey swims just as it did before.
However, the coupling weights are more global than one might expect given
the length of projections in the lamprey [2]. It is possible, however, to define
the transformation Mω using the gradient of the tension in z, which makes
the coupling more local in the Gaussian space. This allows us to match the
known neural projection data from the lamprey.

Step 5.5.2 We can now perform a second iteration of steps 2-4 by introducing
a neuronal representation of the Gaussian amplitudes, am(t):

cmk = Fmk[am(t)] (encode) (7)

am(t) =
∑
k

αmkcmk(t) (decode) . (8)

Here, Fmk[] is the nonlinear spike generation process that encodes am(t) into
the firing rate of the neuron indexed by m, k. The αmk decode the firing rate
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back to a Gaussian amplitude [4][5]. In this paper, we define the encoding
process as Fmk[am(t)] = [gmkam(t) + bmk]+, where []+ stands for rectification.
The response of the neuronal population is defined by assuming a plausible
set of encoding parameters, gmk (gain) and bmk (bias), and then finding the
optimal weights αmk using a procedure such as singular value decomposition
to minimize the square error of the decoding. Notably, this kind of analysis
also works well for more complex forms of encoding, like that found in full
conductance models of spiking neurons.

Step 5.5.3 The dynamics of the neuron firing rates, cmk, can be found by first
noting that τc

dcmk(t)
dt
≈ −(cmk(t)−cmk(t+τc)) and then using the encoding and

decoding relationships (7) and (8) and the Gaussian dynamics (6) as follows:

cmk(t+ τc) =F [am(t+ τc)] ≈
[
am(t) + τc

dam(t)

dt

]
+

= [am(t) + τcm · a(t)]+

≈

gmk(∑
l

αmlcml(t) + τc
∑
nj

mnmαnjcnj(t)) + bmk


+

. (9)

This results in

τc
dcmk(t)

dt
=−

cmk(t)−
∑

l

Ωint
mklcml(t) +

∑
nj

Ωcpl
mnkjcnj(t) + bmk


+

 .(10)

The weights Ωint
mkl = gmkαml define coupling weights internal to a popu-

lation representing a particular Gaussian coefficient. The weights Ωcpl
mnkj =

τcmnmgmkαnj, define the coupling between populations representing different
coefficients and thus drive the dynamics of the lamprey’s swimming. The time
constant τc defines the time scale of the neuronal dynamics,

Step 5.5.4 Given the nature of this model, we can simply replace parts of
the Gaussian representation with a neural one. This has great computational
advantages, allowing us to simulate one section of the lamprey in great detail
(i.e. at the neural level) and concurrently simulate the other sections at a
lower level of detail (i.e. the Gaussian level). Our simulations have shown that
representing the Gaussian coefficients at the neural level does not adversely
affect the model’s performance.

3 Strengths of this Model and Method

The main advantages of this model over traditional oscillator models lie in the
model’s controlability and stability. In contrast to traditional models, we have
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direct control over the direction and frequency of swimming via the ω param-
eter (which can also be represented neurally). Adding other parameters is a
simple matter of introducing them in the Fourier model and projecting them
to the neural space. As well, unlike bistable oscillator models, the stability of
this model is guaranteed since the parameters are generated from an analyti-
cally stable model. In other words, we explicitly construct a spatial-temporal
attractor in neuronal space that meets the criteria of the modeled CPG.

Incorporating more detail (e.g. more realistic muscle dynamics) does not pose
an insurmountable challenge or the possibility of unforeseen behaviors using
this method. The approach allows us to take into account data available from
the neurobiological system. In the case of the lamprey, we could incorporate
constraints such as observed connectivity, spatial wave length, and neuron
response functions. Additional constraints can be incorporated not ad hoc,
but by following a procedure similar to the one outlined here.

Perhaps most important is the generality of this approach. Any periodic be-
havior, including lamprey locomotion, can be thought of as a cyclic attractor
in the system’s state space. Other attractors, such as line attractors and point
attractors, capture other kinds of natural behavior. For example, line attrac-
tors provide a good description of the neural integrator (which controls eye
position) [4]. These “dynamical systems” descriptions are general ones. From
this viewpoint, traditional CPG bistable oscillators are only a special sub-
set of the more general class of attractor motor control circuits. The method
presented here is applicable to all such circuits.

References

[1] E. Marder, N. Kopell and K. Sigvardt, How computation aids in understanding
biological networks, in: P. Stein, S. Grillner, A. Selverston and D. Stuart, eds.,
Neurons, networks, and motor behavior (MIT Press, Cambridge, MA, 1997).

[2] E. Marder and R. L. Calabrese, Principles of rhythmic motor pattern generation,
Physiological Reviews 76:3 (1996) 687-717.

[3] A. I. Selverston, Are central pattern generators understandable? Behavioral and
Brain Sciences 3 (1980) 535-571.

[4] C. Eliasmith and C. H. Anderson, Developing and applying a toolkit from a
general neurocomputational framework, Neurocomputing 26 (1999) 1013-1018.

[5] S. Hakimian, C. H. Anderson, W. T. Thach, A PDF model of populations of
Purkinje cells, Neurocomputing 26 (1999) 169-175.

[6] T. Wannier, T. G. Deliagina, G. N. Orlovsky, and S. Grillner, Differential effects
of the reticulospinal system on locomotion in lamprey, J. Neurophysiology 80
(1998) 103-112.

6


